Raisonnement

De EduTech Wiki
Aller à la navigation Aller à la recherche
Bases psychopédagogiques des technologies éducatives
Module: Introduction aux théories psychologiques
◀▬▬▶
à améliorer débutant
2013/10/14
Sous-pages et productions:

Raisonnement : inductif (analogies) / déductif (syllogismes)

Introduction

Le raisonnement est un processus cognitif qui permet d'obtenir de nouveaux résultats ou de vérifier la réalité d'un fait en faisant appel soit à différentes lois soit à des expériences, quel que soit leur domaine d'application : mathématique, judiciaire, physique, pédagogie, etc.

On dit que l’individu effectue des inférences et que le mécanisme d’élaboration de ces inférences s’appelle raisonnement.

Déduction logique

En logique, la déduction procède de la conception que les moyens ne sont pas plus importants que la fin (conclusion), par opposition à l'induction logique qui consiste à former des représentations générales à partir de faits particuliers. La déduction est un principe de la logique développée entre autres par Aristote. D'autres théories logiques définissent le raisonnement déductif comme une inférence dont la conclusion est aussi certaine que les prémisses, tandis que dans un raisonnement inductif la conclusion peut être moins certaine que les prémisses. Dans les deux approches, la conclusion d'une inférence déductive découle des prémisses ; celles-ci ne peuvent être vraies si la conclusion est fausse. (En logique aristotélicienne, les prémisses d'un raisonnement inductif peuvent entretenir le même lien avec la conclusion.)

Exemples

Les syllogismes suivants sont corrects :

 Tous les hommes sont mortels.
 Or tous les Athéniens sont des hommes.
 Donc tous les Athéniens sont mortels.
 La peinture est au-dessus du bureau.
 Le bureau est au-dessus du sol.
 Par conséquent la peinture est au-dessus du sol.

Le syllogisme suivant est incorrect :

 Tous les criminels sont contre le gouvernement.
 Or tous les membres de l'opposition sont contre le gouvernement.
 Donc tous les membres de l'opposition sont des criminels.

Ce dernier raisonnement est incorrect, car les hypothèses ne parviennent pas à relier l'appartenance au parti de l'opposition et le fait d'être un criminel. Il s'agit d'une sorte de sophisme amené par un argument fallacieux : il confond certains « contre le gouvernement » (les membres de l'opposition, les criminels), et conclut sur une égalité entre tous ces individus particuliers sous prétexte qu'ils appartiennent à la même catégorie. Seulement, s'il est possible d'être à la fois membre de l'opposition et criminel, on ne peut en déduire que l'un implique nécessairement l'autre ; c'est ce que l'on appelle le sophisme du milieu non distribué (fallacy of the undistributed middle). Dans ce genre de cas, les deux prémisses peuvent être vraies sans que la conclusion soit correcte, car la forme logique est incorrecte.

Induction logique

L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion « philosophique » de l'induction. En effet, en mathématiques, en logique et en informatique, l'induction complète, aujourd'hui très souvent abrégée en induction, est une autre façon de désigner la récurrence, aussi bien le raisonnement par récurrence que les définitions par récurrence. Le terme est souvent employé pour les généralisations de la récurrence aux bons ordres et aux relations bien fondées. En raisonnement automatisé, l'abduction est un mode de raisonnement qui vise à émettre une hypothèse pour expliquer un fait et elle ne doit pas être confondue avec l'induction présentée ici.

Exemples

Par exemple : Si la loi de la gravitation universelle détermine que, une pomme qui se détache de son arbre tombera sur le sol, et de quelle manière elle le fera, l'observation du mouvement de cette même pomme permet d'établir la loi générale, mais avec un degré de certitude très faible. Si ensuite, on observe que toutes les pommes et tous les corps tombent de la même façon, si on observe que les corps dans l'espace respectent la même loi, alors la probabilité de la loi augmentera jusqu'à devenir une quasi certitude. Dans le cas de la gravitation universelle, cependant, on a observé que l'orbite de Mercure présentait un effet de précession qui n'était pas expliqué par la loi. La loi de la gravitation universelle est cependant restée considérée comme universellement valide jusqu'à ce que Henri Poincaré explique le phénomène par une nouvelle loi de composition des vitesses qui conserve l'invariance de la vitesse de la lumière et qui sera expliqué par Einstein dans la théorie de la relativité restreinte. Malgré tout, la gravitation universelle reste utilisée car elle reste valable dans les cas courants, et elle est plus simple à utiliser et à comprendre que la théorie de la relativité.

Concept learning

Le modèle ACT

Le modèle

Le modèle ACT (Adaptative Control of Thought) de Anderson (1983, 1993) est un modèle important ayant recours au concept de Mémoire de Travail. C’est l’un des modèles phares de l’approche dite de la « computation symbolique » qui s’est développée depuis les années 80. Son architecture se compose de 3 systèmes mnésiques: une mémoire de travail, une mémoire déclarative et une mémoire procédurale.

Mémoires

La mémoire de travail contient la représentation courante de l'environnement ou de la situation du moment. A l'image de la MCT dans le modèle modal, elle assure le maintien temporaire d'informations, mais elle est surtout considérée par Anderson comme un espace de traitement dans lequel s’accumulent les données nécessaires ou produites au cours des raisonnements effectués par le système cognitif pour résoudre des problèmes. L'originalité de ce modèle tient dans la présence de deux structures de stockage à long terme de l’information: la mémoire permanente déclarative, qui contient des informations factuelles ou conceptuelles (sous la forme de propositions logiques, d’images mentales, ou de schémas cognitifs) organisées sous la forme d'un réseau sémantique, et la mémoire permanente procédurale, qui contient des savoir-faire encodés sous la forme de règles de production, et qui sont susceptibles de s'appliquer à elles-mêmes.

Processus du modèle

Au-delà de ces trois systèmes de mémoire, le modèle ACT repose sur 4 processus fondamentaux :

  • le stockage (qui permet la mémorisation à long terme des représentations élaborées et contenues dans la MDT.
  • la récupération (qui assure le recouvrement d'informations en mémoire déclarative).
  • le matching ou appariement (qui permet de comparer le contenu de la MDT avec les prémisses des règles de production stockées en mémoire procédurale).
  • l'exécution (qui provoque le transfert en MDT de la partie « action » des règles de productions dont l'appariement a réussi).

Fonctionnement

D'une façon schématique, le fonctionnement du modèle ACT est le suivant: lorsqu'une information est prélevée dans l'environnement, elle est encodée puis stockée en mémoire de travail. Cette information peut alors activer une partie de la mémoire déclarative et se propager dans le réseau relationnel qui la compose. L'activation peut également s'étendre à la mémoire procédurale. Les connaissances déclaratives activées sont transférées en Mémoire de Travail où elles viennent se combiner avec les informations perceptives, afin de constituer une représentation cognitive ou un modèle mental de l'environnement. L'appariement du contenu de la MDT avec les prémisses de certaines règles de production peut alors provoquer le transfert de ces dernières en MDT puis, dans un second temps, leur mise en œuvre pour la production de performances.

Ce qui est intéressant dans ce modèle, c’est qu’il place la Mémoire de Travail comme la structure centrale des raisonnements et des décisions humaines, comme le siège des représentations cognitives occurrentes assimilées ici a des « modèles mentaux » de l’environnement extérieur ou du problème à résoudre, et qui vont servir de guide à l’activité humaine.

Pour aller plus loin

Pour des raisons de droits d'auteur, nous ne pouvons pas vous donner directement accès aux articles et chapitres de livres ci-dessous. Certains d'entre eux, en particulier les articles de revues, requièrent soit d'être connecté sur le réseau de l'unige, soit d'installer le VPN qui vous permet d'accéder au réseau de l'unige depuis votre machine. D'autres sont directement accessibles sans passer par le réseau de l'unige.

Références

  • Anderson, J. R. (1983). A spreading activation theory of memory. Journal of verbal learning and verbal behavior, 22(3), 261-295.
  • Michael R. Genesereth and Nils J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, 1987 [détail de l’édition], chap. 7 Induction, pp. 161-176.

Droits d'auteur

Articles originaux disponibles sur : http://fr.wikipedia.org