« Raisonnement » : différence entre les versions
Ligne 51 : | Ligne 51 : | ||
=Concept learning= | =Concept learning= | ||
'''Concept learning''', also known as '''category learning''', '''concept attainment''', and '''concept formation''', is largely based on the works of the cognitive psychologist [[Jerome Bruner]]. Bruner, Goodnow, & Austin (1967) defined concept attainment (or concept learning) as "the search for and listing of attributes that can be used to distinguish exemplars from non exemplars of various categories." More simply put, concepts are the mental categories that help us classify objects, events, or ideas, building on the understanding that each object, event, or idea has a set of common relevant features. Thus, concept learning is a strategy which requires a learner to compare and contrast groups or categories that contain concept-relevant features with groups or categories that do not contain concept-relevant features. | |||
Concept learning also refers to a learning task in which a human or machine learner is trained to classify objects by being shown a set of example objects along with their class labels. The learner simplifies what has been observed by condensing it in the form of an example. This simplified version of what has been learned is then applied to future examples. Concept learning may be simple or complex because learning takes place over many areas. When a concept is difficult, it is less likely that the learner will be able to simplify, and therefore will be less likely to learn. Colloquially, the task is known as ''learning from examples.'' Most theories of concept learning are based [[Exemplar theory|on the storage of exemplars]] and avoid summarization or overt abstraction of any kind. | |||
== Types of concepts == | |||
'''Not a Concept'''. Concept learning must be distinguished from learning by reciting something from memory (recall) or discriminating between two things that differ (discrimination). However, these issues are closely related, since memory recall of facts could be considered a "trivial" conceptual process where prior exemplars representing the concept are invariant. Similarly, while discrimination is not the same as initial concept learning, discrimination processes are involved in refining concepts by means of the repeated presentation of exemplars. | |||
'''Concrete or Perceptual Concepts vs Abstract Concepts''' | |||
'''Defined (or Relational) and Associated Concepts''' | |||
'''Complex Concepts'''. Constructs such as a [[Schema (psychology)|schema]] and a script are examples of complex concepts. A schema is an organization of smaller concepts (or features) and is revised by situational information to assist in comprehension. A script on the other hand is a list of actions that a person follows in order to complete a desired goal. An example of a script would be the process of buying a CD. There are several actions that must occur before the actual act of purchasing the CD and a script provides a sequence of the necessary actions and proper order of these actions in order to be successful in purchasing the CD. | |||
== Methods of learning a concept == | |||
'''Discovery - ''' Every baby discovers concepts for itself, such as discovering that each of its fingers can be individually controlled or that care givers are individuals. Although this is perception driven, formation of the concept is more than memorizing perceptions. | |||
'''Examples - ''' Supervised or unsupervised generalizing from examples may lead to learning a new concept, but concept formation is more than generalizing from examples. | |||
'''Words - ''' Hearing or reading new words leads to learning new concepts, but forming a new concept is more than learning a dictionary definition. A person may have previously formed a new concept before encountering the word or phrase for it. | |||
'''Exemplars comparison - ''' Another efficient way to learn new categories and induce new categorization rules is to compare a few objects when their categorical relation is known. For example, comparing two exemplars while being informed that the two are from the same category allows the attributes shared by the category members to be identified, and illustrates the variability permitted within this category. On the other hand, comparing two exemplars while being informed that the two are from different categories may allow an identification of attributes which has diagnostic value. Interestingly, within a category and between categories comparisons are not always similarly useful for category learning, and the capacity to use either one of these two forms of learning by comparison is subject to change during early childhood (Hammer et al., 2009). | |||
'''Invention - ''' When prehistoric people who lacked tools used their fingernails to scrape food from killed animals or smashed melons, they noticed that a broken stone sometimes had a sharp edge like a fingernail and was therefore suitable for scraping food. Inventing a stone tool to avoid broken fingernails was a new concept. | |||
== Theoretical issues == | |||
In general, the theoretical issues underlying concept learning are those underlying [[Inductive reasoning|induction]]. These issues are addressed in many diverse publications, including literature on subjects like [[Version Spaces]], [[Statistical Learning Theory]], [[PAC Learning]], [[Information Theory]], and [[Algorithmic Information Theory]]. Some of the broad theoretical ideas are also discussed by Watanabe (1969,1985), Solomonoff (1964a,1964b), and Rendell (1986); see the reference list below. | |||
=Le modèle ACT= | =Le modèle ACT= |
Version du 14 octobre 2013 à 12:49
Raisonnement : inductif (analogies) / déductif (syllogismes)
Introduction
Le raisonnement est un processus cognitif qui permet d'obtenir de nouveaux résultats ou de vérifier la réalité d'un fait en faisant appel soit à différentes lois soit à des expériences, quel que soit leur domaine d'application : mathématique, judiciaire, physique, pédagogie, etc.
On dit que l’individu effectue des inférences et que le mécanisme d’élaboration de ces inférences s’appelle raisonnement.
Déduction logique
En logique, la déduction procède de la conception que les moyens ne sont pas plus importants que la fin (conclusion), par opposition à l'induction logique qui consiste à former des représentations générales à partir de faits particuliers. La déduction est un principe de la logique développée entre autres par Aristote. D'autres théories logiques définissent le raisonnement déductif comme une inférence dont la conclusion est aussi certaine que les prémisses, tandis que dans un raisonnement inductif la conclusion peut être moins certaine que les prémisses. Dans les deux approches, la conclusion d'une inférence déductive découle des prémisses ; celles-ci ne peuvent être vraies si la conclusion est fausse. (En logique aristotélicienne, les prémisses d'un raisonnement inductif peuvent entretenir le même lien avec la conclusion.)
Exemples
Les syllogismes suivants sont corrects :
Tous les hommes sont mortels. Or tous les Athéniens sont des hommes. Donc tous les Athéniens sont mortels.
La peinture est au-dessus du bureau. Le bureau est au-dessus du sol. Par conséquent la peinture est au-dessus du sol.
Le syllogisme suivant est incorrect :
Tous les criminels sont contre le gouvernement. Or tous les membres de l'opposition sont contre le gouvernement. Donc tous les membres de l'opposition sont des criminels.
Ce dernier raisonnement est incorrect, car les hypothèses ne parviennent pas à relier l'appartenance au parti de l'opposition et le fait d'être un criminel. Il s'agit d'une sorte de sophisme amené par un argument fallacieux : il confond certains « contre le gouvernement » (les membres de l'opposition, les criminels), et conclut sur une égalité entre tous ces individus particuliers sous prétexte qu'ils appartiennent à la même catégorie. Seulement, s'il est possible d'être à la fois membre de l'opposition et criminel, on ne peut en déduire que l'un implique nécessairement l'autre ; c'est ce que l'on appelle le sophisme du milieu non distribué (fallacy of the undistributed middle). Dans ce genre de cas, les deux prémisses peuvent être vraies sans que la conclusion soit correcte, car la forme logique est incorrecte.
Induction logique
L'induction est historiquement le nom utilisé pour signifier un genre de raisonnement qui se propose de chercher des lois générales à partir de l'observation de faits particuliers, sur une base probabiliste. Remarque : Bien qu'associée dans le titre de cet article à la logique, la présentation qui suit correspond surtout à la notion « philosophique » de l'induction. En effet, en mathématiques, en logique et en informatique, l'induction complète, aujourd'hui très souvent abrégée en induction, est une autre façon de désigner la récurrence, aussi bien le raisonnement par récurrence que les définitions par récurrence. Le terme est souvent employé pour les généralisations de la récurrence aux bons ordres et aux relations bien fondées. En raisonnement automatisé, l'abduction est un mode de raisonnement qui vise à émettre une hypothèse pour expliquer un fait et elle ne doit pas être confondue avec l'induction présentée ici.
Exemples
Par exemple : Si la loi de la gravitation universelle détermine que, une pomme qui se détache de son arbre tombera sur le sol, et de quelle manière elle le fera, l'observation du mouvement de cette même pomme permet d'établir la loi générale, mais avec un degré de certitude très faible. Si ensuite, on observe que toutes les pommes et tous les corps tombent de la même façon, si on observe que les corps dans l'espace respectent la même loi, alors la probabilité de la loi augmentera jusqu'à devenir une quasi certitude. Dans le cas de la gravitation universelle, cependant, on a observé que l'orbite de Mercure présentait un effet de précession qui n'était pas expliqué par la loi. La loi de la gravitation universelle est cependant restée considérée comme universellement valide jusqu'à ce que Henri Poincaré explique le phénomène par une nouvelle loi de composition des vitesses qui conserve l'invariance de la vitesse de la lumière et qui sera expliqué par Einstein dans la théorie de la relativité restreinte. Malgré tout, la gravitation universelle reste utilisée car elle reste valable dans les cas courants, et elle est plus simple à utiliser et à comprendre que la théorie de la relativité.
Concept learning
Concept learning, also known as category learning, concept attainment, and concept formation, is largely based on the works of the cognitive psychologist Jerome Bruner. Bruner, Goodnow, & Austin (1967) defined concept attainment (or concept learning) as "the search for and listing of attributes that can be used to distinguish exemplars from non exemplars of various categories." More simply put, concepts are the mental categories that help us classify objects, events, or ideas, building on the understanding that each object, event, or idea has a set of common relevant features. Thus, concept learning is a strategy which requires a learner to compare and contrast groups or categories that contain concept-relevant features with groups or categories that do not contain concept-relevant features.
Concept learning also refers to a learning task in which a human or machine learner is trained to classify objects by being shown a set of example objects along with their class labels. The learner simplifies what has been observed by condensing it in the form of an example. This simplified version of what has been learned is then applied to future examples. Concept learning may be simple or complex because learning takes place over many areas. When a concept is difficult, it is less likely that the learner will be able to simplify, and therefore will be less likely to learn. Colloquially, the task is known as learning from examples. Most theories of concept learning are based on the storage of exemplars and avoid summarization or overt abstraction of any kind.
Types of concepts
Not a Concept. Concept learning must be distinguished from learning by reciting something from memory (recall) or discriminating between two things that differ (discrimination). However, these issues are closely related, since memory recall of facts could be considered a "trivial" conceptual process where prior exemplars representing the concept are invariant. Similarly, while discrimination is not the same as initial concept learning, discrimination processes are involved in refining concepts by means of the repeated presentation of exemplars.
Concrete or Perceptual Concepts vs Abstract Concepts
Defined (or Relational) and Associated Concepts
Complex Concepts. Constructs such as a schema and a script are examples of complex concepts. A schema is an organization of smaller concepts (or features) and is revised by situational information to assist in comprehension. A script on the other hand is a list of actions that a person follows in order to complete a desired goal. An example of a script would be the process of buying a CD. There are several actions that must occur before the actual act of purchasing the CD and a script provides a sequence of the necessary actions and proper order of these actions in order to be successful in purchasing the CD.
Methods of learning a concept
Discovery - Every baby discovers concepts for itself, such as discovering that each of its fingers can be individually controlled or that care givers are individuals. Although this is perception driven, formation of the concept is more than memorizing perceptions.
Examples - Supervised or unsupervised generalizing from examples may lead to learning a new concept, but concept formation is more than generalizing from examples.
Words - Hearing or reading new words leads to learning new concepts, but forming a new concept is more than learning a dictionary definition. A person may have previously formed a new concept before encountering the word or phrase for it.
Exemplars comparison - Another efficient way to learn new categories and induce new categorization rules is to compare a few objects when their categorical relation is known. For example, comparing two exemplars while being informed that the two are from the same category allows the attributes shared by the category members to be identified, and illustrates the variability permitted within this category. On the other hand, comparing two exemplars while being informed that the two are from different categories may allow an identification of attributes which has diagnostic value. Interestingly, within a category and between categories comparisons are not always similarly useful for category learning, and the capacity to use either one of these two forms of learning by comparison is subject to change during early childhood (Hammer et al., 2009).
Invention - When prehistoric people who lacked tools used their fingernails to scrape food from killed animals or smashed melons, they noticed that a broken stone sometimes had a sharp edge like a fingernail and was therefore suitable for scraping food. Inventing a stone tool to avoid broken fingernails was a new concept.
Theoretical issues
In general, the theoretical issues underlying concept learning are those underlying induction. These issues are addressed in many diverse publications, including literature on subjects like Version Spaces, Statistical Learning Theory, PAC Learning, Information Theory, and Algorithmic Information Theory. Some of the broad theoretical ideas are also discussed by Watanabe (1969,1985), Solomonoff (1964a,1964b), and Rendell (1986); see the reference list below.
Le modèle ACT
Le modèle
Le modèle ACT (Adaptative Control of Thought) de Anderson (1983, 1993) est un modèle important ayant recours au concept de Mémoire de Travail. C’est l’un des modèles phares de l’approche dite de la « computation symbolique » qui s’est développée depuis les années 80. Son architecture se compose de 3 systèmes mnésiques: une mémoire de travail, une mémoire déclarative et une mémoire procédurale.
Mémoires
La mémoire de travail contient la représentation courante de l'environnement ou de la situation du moment. A l'image de la MCT dans le modèle modal, elle assure le maintien temporaire d'informations, mais elle est surtout considérée par Anderson comme un espace de traitement dans lequel s’accumulent les données nécessaires ou produites au cours des raisonnements effectués par le système cognitif pour résoudre des problèmes. L'originalité de ce modèle tient dans la présence de deux structures de stockage à long terme de l’information: la mémoire permanente déclarative, qui contient des informations factuelles ou conceptuelles (sous la forme de propositions logiques, d’images mentales, ou de schémas cognitifs) organisées sous la forme d'un réseau sémantique, et la mémoire permanente procédurale, qui contient des savoir-faire encodés sous la forme de règles de production, et qui sont susceptibles de s'appliquer à elles-mêmes.
Processus du modèle
Au-delà de ces trois systèmes de mémoire, le modèle ACT repose sur 4 processus fondamentaux :
- le stockage (qui permet la mémorisation à long terme des représentations élaborées et contenues dans la MDT.
- la récupération (qui assure le recouvrement d'informations en mémoire déclarative).
- le matching ou appariement (qui permet de comparer le contenu de la MDT avec les prémisses des règles de production stockées en mémoire procédurale).
- l'exécution (qui provoque le transfert en MDT de la partie « action » des règles de productions dont l'appariement a réussi).
Fonctionnement
D'une façon schématique, le fonctionnement du modèle ACT est le suivant: lorsqu'une information est prélevée dans l'environnement, elle est encodée puis stockée en mémoire de travail. Cette information peut alors activer une partie de la mémoire déclarative et se propager dans le réseau relationnel qui la compose. L'activation peut également s'étendre à la mémoire procédurale. Les connaissances déclaratives activées sont transférées en Mémoire de Travail où elles viennent se combiner avec les informations perceptives, afin de constituer une représentation cognitive ou un modèle mental de l'environnement. L'appariement du contenu de la MDT avec les prémisses de certaines règles de production peut alors provoquer le transfert de ces dernières en MDT puis, dans un second temps, leur mise en œuvre pour la production de performances.
Ce qui est intéressant dans ce modèle, c’est qu’il place la Mémoire de Travail comme la structure centrale des raisonnements et des décisions humaines, comme le siège des représentations cognitives occurrentes assimilées ici a des « modèles mentaux » de l’environnement extérieur ou du problème à résoudre, et qui vont servir de guide à l’activité humaine.
Pour aller plus loin
Pour des raisons de droits d'auteur, nous ne pouvons pas vous donner directement accès aux articles et chapitres de livres ci-dessous. Certains d'entre eux, en particulier les articles de revues, requièrent soit d'être connecté sur le réseau de l'unige, soit d'installer le VPN qui vous permet d'accéder au réseau de l'unige depuis votre machine. D'autres sont directement accessibles sans passer par le réseau de l'unige.
- Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological review, 89(4), 369. Article très long, début intéressant.
Références
- Anderson, J. R. (1983). A spreading activation theory of memory. Journal of verbal learning and verbal behavior, 22(3), 261-295.
- Michael R. Genesereth and Nils J. Nilsson, Logical Foundations of Artificial Intelligence, Morgan Kaufmann, 1987 [détail de l’édition], chap. 7 Induction, pp. 161-176.
Droits d'auteur
Articles originaux disponibles sur : http://fr.wikipedia.org