« Apprentissage par investigation » : différence entre les versions

De EduTech Wiki
Aller à la navigation Aller à la recherche
Ligne 137 : Ligne 137 :


Dans d'autres documents notamment Project 2061 (AAAS 1993) ''inquiry'' est défini comme une des composantes essentielles de ce qu'est la science (Nature Of Science NOS)  [http://www.project2061.org/publications/bsl/online/ch1/ch1.htm#B Scientific Inquiry]  
Dans d'autres documents notamment Project 2061 (AAAS 1993) ''inquiry'' est défini comme une des composantes essentielles de ce qu'est la science (Nature Of Science NOS)  [http://www.project2061.org/publications/bsl/online/ch1/ch1.htm#B Scientific Inquiry]  
{{Citation|In the vision presented by the Standards, inquiry is a step beyond "science as a process," in which students learn skills, such as observation, inference, and experimentation. The new vision includes the "processes of science" and requires that students combine processes and scientific knowledge as they use scientific reasoning and critical thinking to develop their understanding of science.}} [http://www.nap.edu/readingroom/books/nses/html/6a.html#sis (National science education standards.NRC, 1996)]





Version du 17 décembre 2006 à 20:19

Définition

L'apprentissage par investigation (Inquiry-based learning ou IBL) est supporté par les théories de l'apprentissage constructivistes et socio-constructivistes (Eick & Reed, 2002).

Avec cette pédagogie, les enfant peuvent apprendre la science en faisant de la science (Aubé & David,2003).

L'apprentissage par investigation comme modèle pédagogique au sens (Joyce, 2000) se distingue de l'investigation scientifique qui est une méthode de recherche centrale en sciences expérimentales. Les présupposés sont proches puisque on y cherche la validation des idées par leur confrontation aux données expérimentales et aux autres idées mais l'un met au premier plan une dimension pédagogiques l'autre est d'abord orienté vers la recherche. Pour une discussion de cette différence voir Apprentissage authentique.


L'apprentissage par investigation est souvent décrit comme un cycle ou une spirale, ce qui implique la formulation d'une question, une investigation, la création d'une solution ou d'une réponse appropriée, une discussion et une réflexion basée avec les résultats (Bishop et al., 2004).

Ce processus d'apprentissage par l'exploration du monde matériel ou réel mais aussi la confrontation des idées commence par susciter chez l'apprenant des questions et l'incite à faire des expériences, des recherches dans la poursuite de nouvelles compréhensions, qui posent de nouvelles questions.

Les productions sont donc d'abord vues comme des étapes dans la compréhension croissante. A la fois par la fonction de clarification de la pensée de l'écriture Writing-to-learn,(Klein, 1999) et pour fixer un état de cette construction. Ces productions permettent en effet de débattre et de confronter les idées.

Les questions sont centrales dans ce processus : elles sont le moteur des activités puisqu'elles focalisent la recherche des apprenants. Elles sont aussi l'outil principal de pilotage pour l'enseignant. Faire apparaitre les bonnes questions, veiller à ce que des réponses y soient trouvées, leur solidité éprouvée, devient alors une des principales activités de l'enseignant.

La plupart des chercheurs en science reconnaitraient cette focalisation sur les questions comme appropriée et constitutif de l'épistémologie de la discipline.

IBL est un processus centré sur l'apprenant et géré par l'apprenant. Le but est d'engager les étudiants dans un apprentissage actif, idéalement basé sur leurs propres questions. Les activités d'apprentissage sont organisées de manière cyclique, indépendamment du sujet. Chaque question mène à la création de nouvelles idées et d'autres questions.

IBL s'inspire du socio-constructivisme à cause du travail collaboratif dans lequel les étudiants trouvent des ressources, utilisent des outils et des ressources fournies par les partenaires d'investigation. Ainsi les apprenants font des progrès en partageant leur travail, en parlant et en construisant sur le travail de chacun.

Modèles

Modèle d'investigation cyclique

Le but d'IBL est la création de nouvelles idées et concepts, et leur propagation dans la classe. L'activité finit souvent par la rédaction d'un document qui essaie de répondre aux questions initiales.

Un cycle d'investigation est un processus qui essaie de permettre à l'étudiant de répondre à ces questions avec les informations qu'il a connecté, ce qui permet la création de nouvelles idées et concepts.

Le cycle d'investigation a cinq étapes globales : Questionner, Enquêter, Créer, Discuter et Réfléchir. Je donnerai un exemple pour chaque étape avec l'exemple du scénarrio de l'arc-en-ciel de Villavicencio (2000), qui travaille avec la lumière et les couleurs chaque année avec des enfants de 4 à 5 ans.

Cercle IBL.gif
tiré de : [The Inquiry Page]

Durant la préparation de l'activité, l'enseignant doit penser au nombre de cycles à faire, et à comment terminer l'activité (à l'étape Questionner) : reformuler les questions ou y répondre et exprimer les questions qui en découlent.

Questionner

Questionner démarre avec la curiosité des apprenants sur le monde, idéalement avec leurs propres questions. L'enseignant peut stimuler la curiosité des apprenants par une expérience ou une visite dans la nature, ou un débat préliminaire sur leurs conceptions. C'est important que les étudiants puissent formuler leurs questions car ils peuvent montrer alors leurs conceptions sur le sujet d'apprentissage.

Cette étape se focalise sur un problème ou une question que les étudiants commencent à définir. (Thelen 1960) met en évidence l'importance du "puzzlement" qu'on peut peut-être associer au conflit socio-cognitif (Astolfi 2002 par ex. ) qui doit résulter de la situation que l'enseignant a mise en place. Il ne s'agit pas simplement de donner aux apprenants un problème à résoudre, mais d'une situation qui interroge et interpelle les élèves individuellement et dans le groupe. Les questions peuvent apparaître dans la confrontation des conceptions différentes des apprenants. Les questions doivent donc émerger du groupe d'apprenants par un processus que l'enseignant suscite, anime, mais ne manipule pas. Les questions doivent appartenir aux apprenants. (cf l'importance du sentiment d'autonomie dans la plupart des théories de la motivation (p. ex Viau 1997)) L'examen de la source des questions est donc important si l'on veut un réel processus d'investigation.


Ces questions seront naturellement redéfinies encore et encore durant le cycle. Les limites des étapes sont floues : une étape n'est jamais réellement terminée lorsque la suivante démarre.

Scénario Arc-en-ciel: L'enseignant donne des miroirs aux enfants, de sortes qu'ils puissent jouer avec les rayons du soleil qui passent au travers des fenêtres de la salle de classe. Avec ces manipulations, les étudiants peuvent déjà formuler quelques questions sur la lumière et les couleurs.

Enquêter

Questionner mène naturellement à Enquêter qui consiste à accompagner la curiosité vers la recherche d'informations. Des étudiants ou des groupes d'étudiants collectent les informations, étudient, regardent des ressources, expérimentent, observent, dessinent,… Ils peuvent déjà redéfinir la question, l'éclaircir ou prendre une autre direction que la question initiale ne permettait pas d'anticiper. La quête d'information par le élèves est au centre du processus : si ils ont bien pris les questions pour eux-mêmes dans la phase précédente ils vont chercher activement, et auront besoin d'être guidés et conseillés dans leur investigation, et plutôt que de donner des réponses qu'il connaît probablement l'enseignant les accompagne dans une recherche dans des ouvrages, des expériences, des observations de terrain, des interviews, etc. il faut prêter attention ici selon (Thelen 1960) à qui cherche activement et comment les informations sont obtenues. Enquêter est un processus qui devrait reposer sur la motivation intrinsèque de l'étudiant principalement, avec l'enseignant dans un rôle de conseiller, mais aussi de maintenir un environnement assez riche en ressources (livres, matériel expérimental, opportunités d'observation, webographie, etc) pour permettre le succès des investigations (Joyce 2000) .

Scénario Arc-en-ciel : Une fois que les questions sont posées, l'enseignant donne des prismes aux enfants qui leur permet de faire dévier la lumière et une Round Light Source (RLS), grosse lampe cylindrique avec quatre fenêtres colorées au travers desquelles des rais de lumières peuvent passer. Ainsi les enfants peuvent mélanger les couleurs et voir le résultat sur un écran. Ils commencent à collecter des informations.

Créer

Les informations collectées commencent à se rejoindre. Les étudiants commencent à faire des liens. Ici, la capacité à syntéhétiser le sens est l'étincelle qui permet la formation de nouvelles connaissances. Les étudiants ont de nouvelles pensées, idées et théories qui ne sont pas directement inspirées par leur propre expérience. Ainsi ils l'écrivent dans une sorte de rapport.

Scénario Arc-en-ciel : Quelques liens sont crées par les informations colletées et les enfants comprennent que les arc-en-ciel sont créés par ce type de phénomène.

Discuter

Dès lors, les étudiants partagent leurs idées les uns les autres, et interrogent les autres sur leurs propres expériences et investigations.

Le partage des connaissances est un processus de communautaire de construction et ils commencent à comprendre le sens de leur investigation. Comparer les notes, discuter les conclusions et partager leurs expériences sont quelques exemples de ce processus actif.

Scénario Arc-en-ciel : les enfants sont souvent et spontanément assis autour du RLS. Ils discutent et partagent leurs nouvelles connaissances acquises dans le but de comprendre le mélange des couleurs. Ensuite, ils sont invités à partager leurs résultats avec le reste de la classe, pendant que le professeur écrit les notes au tableau noir.

Réfléchir

Cette étape consiste à prendre du temps pour regarder en arrière. Penser à nouveau à la question initiale, le chemin emprunté et les conclusions actuelles. Les étudiants regardent en arrière et prennent peut-être de nouvelles décisions  : "Une solution a-t-elle été trouvée?", "de nouvelles décisions ont-elle été prises?", "de nouvelles questions sont-elles apparues?", "Que pourraient-ils demander?",…

Scénario Arc-en-ciel : l'enseignant et les étudiants prennent le temps de regarder en arrière pour revoir les notions vues dans les premières étapes de l'activité. Ils essaient de synthétiser et de se projeter avec les connaissances et notions acquises récemment.

Continuation

Maintenant, le premier cycle prend fin et les étudiants sont à nouveau à l'étape de Questionner. Ils peuvent choisir entre 2 options:

  1. Questionner: un nouveau cycle commence nourri par de nouvelles questions ou les nouvelles formulation des questions précédentes. L'enseignant peut alors former des groupes pour stimuler les discussions et intérêts.
  2. Répondre: L'activité prend fin. L'enseignant doit terminer par une ouverture : les questions avec leurs réponses, celles avec une nouvelle formulation, celles apparues durant l'activité. Faire une synthèse est toujours une meilleure solution, même si cette étape n'est pas le but d'un cycle entier.

Scénario Arc-en-ciel: L'enseignant laisse les étudiants libres de répéter leurs expériences ou de tenter des nouveautés. Quelques étudiants essayent de faire ce qu'ils ont vu leur camarade faire, d'autres font les mêmes choses avec ou sans variantes. Un nouveau cycle démarre.

L'avantage de ce modèle est qu'il peut être appliqué avec un gand nombre de type d'étudiants et de matières. De plus, l'enseignant peut construire l'activité en se focalisant sur une partie spécifique du cycle ou une autre, avec un ou plusieurs cycles,…

Le plus souvent, un cycle (formel ou non) n'est pas suffisant et à cause de ça, ce modèle est souvent dessiné plutôt comme une spirale.

Check-liste pour l'IBL

Une check-list pour vérifier si on est bien dans un IBL

The Puzzling Situation

  1. Was there a genuine puzzling situation from which students discerned a problem?
  2. Where the students engaged by the puzzling situation, revealing their entry knowledge, beliefs, assumptions, etc.?
  3. Was there a diversity of responses to the puzzling situation (assumptions, beliefs, knowledge, perspectives, etc.)?

Reactions and Discussion

  1. Did the puzzling situation provoke students to identify and define a particular problem or issue?
  2. Did students discuss the diversity in #3 in the context of the problem identified in #4?
  3. Did students respond to and build upon each other's ideas?
  4. What role did the teacher play? Did students talk to one another or to the teacher?

Formulation of the Problem

  1. Was a problem or issue for investigation identified?
  2. Did the students discuss alternative problems?
  3. Did the problem require students to offer explanations, make predictions, or build hypotheses?

Organization for Investigation

  1. Did students break the investigation tasks and responsibilities down into roles for one another?
  2. Did their investigation plan require independent and cooperative performance for students?
  3. Did the students review their performance, revise plans, or reassign roles?
  4. What role did the teacher play in the group investigation?

Operation

  1. Did most students engage in independent and group investigative tasks?
  2. Did students collect, report, analyze, and interpret information as they gathered it?
  3. Did the group pause to discuss new information and perspectives in light of their initial knowledge, assumptions, perspectives, and feelings?

Conclusion and Assessment

  1. Did the investigation reach a conclusion?
  2. Did the investigation produce a product(s) or a performance(s)?
  3. Were these products or performances shared with others in the class? The school? The community?
  4. Were these products and performances assessed as expressions of academic development? How?
  5. Were these products, performances, and group processes assessed as expressions of the development of academic inquiry and democratic value development? How?

Adapté de Weil, M., & Joyce, B. R. (1975). Three Strategies for Teaching. Englewood Cliffs, NJ: Prentice-Hall. in [Rodney F. Allen The Group Investigation Model ]

Exemples d'activités

Inquiry : un modèle très répandu outre-atlantique mais...

Inquiry est un modèle pédagogique très courant aux USA. Plusieurs textes officiels et des documents défisissant des orientations politiques le mentionnent comme une manière d'apprendre ce qu'est réellement la science {Citation|"...standards call for students to engage in inquiry as a means of learning what science really is "} (NRC, 1996). Inquiry est qualifié de fondamental dans les objectifs de référence nationaux {Citation|" Because of the importance of inquiry, the content standards describing what all students need to know and be able to do include standards on science as inquiry. "} (NRC, 2000) Inquiry est décrit comme l'essence de la science et la manière de construire des connaissancs scientifiques. « Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose explanations based on the evidence derived from their work. Inquiry also refers to the activities of students in which they develop knowledge and understanding of scientific ideas, as well as an understanding of how scientists study the natural world. "»(NRC, 2000) On voit cependant bien que ce terme est bien plus plus large que l'apprentissage par investigation tel qu'il est défini ici Peut-être est-ce une forme de définition de l'épistémologie de la science sans le dire ?

Dans d'autres documents notamment Project 2061 (AAAS 1993) inquiry est défini comme une des composantes essentielles de ce qu'est la science (Nature Of Science NOS) Scientific Inquiry

«In the vision presented by the Standards, inquiry is a step beyond "science as a process," in which students learn skills, such as observation, inference, and experimentation. The new vision includes the "processes of science" and requires that students combine processes and scientific knowledge as they use scientific reasoning and critical thinking to develop their understanding of science.» (National science education standards.NRC, 1996)


En suisse les documents officiels font le plus souvent référence à des contenus et ne se réfèrent à des approches pédagogiques qu'avec une très grande prudence. Bien que l'apprentissage par investigation ne soit en Suisse surement pas majoritaire, il est probable que de nombreux maitres de sciences expérimentales -sans forcément nommer le modèle- utilisent en classe une pédagogie qu'on pourrait classer dans "inquiry" au sens plus large du NRC.

Outils

Le monde de Darwin : Internet educational environnemnt mostly for 8 to 14 years old students. The pedagogy is socio-constructivist, with treatment and organization of the information with collaborative work

Module PostNuke:

Voir aussi

constructivisme, socio-constructivisme, discovery learning, WebQuest, Le Monde De Darwin...

Références

AAAS. (1993). Project 2061. Retrieved 13 décembre, 2006, from http://www.project2061.org/

Ackermann, E.K. (2004). Constructing Knowledge and Transforming The World. In Tokoro, M. & Steels, L. (2004). A Learning Zone Of One's Own. pp17-35. IOS Press

Aubé, M. & David, R. (2003). Le programme d’adoption du monde de Darwin : une exploitation concrète des TIC selon une approche socio-constructiviste. In Taurisson, A. & Senteni, A.(2003). Pédagogie.net : L’essor des communautés d’apprentissage. pp 49-72.

Astolfi, J.-P., & Develay, M. (2002). La didactique des sciences (6e éd. mise à jour ed.). Paris: Presses universitaires de France.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.

Bishop, A.P.,Bertram, B.C.,Lunsford, K.J. & al. (2004). Supporting Community Inquiry with Digital Resources. Journal Of Digital Information, 5 (3).

Chakroun, M. (2003). Conception et mise en place d'un module pédagogique pour portails communautaires Postnuke. Insat, Tunis. Mémoire de licence non publié.

De Jong, T. & Van Joolingen, W.R. (1997). Scientific Discovery Learning with Computer Simulations of Conceptual Domains. University of Twente, The Netherland

Duckworth, E. (1986). Inventing Density. Monography by the North Dakota Study Group on Evaluation, Grand Forks, ND, 1986.
Internet : www.exploratorium.edu/IFI/resources/classroom/inventingdensity.html

Drie, J. van, Boxtel, C. van, & Kanselaar, G. (2003). Supporting historical reasoning in CSCL. In: B. Wasson, S. Ludvigsen, & U. Hoppe (Eds.). Designing for Change in Networked Learning Environments. Dordrecht: Kluwer Academic Press, pp. 93-103. ISBN 1-4020-1383-3.

Eick, C.J. & Reed, C.J. (2002). What Makes an Inquiry Oriented Science Teacher? The Influence of Learning Histories on Student Teacher Role Identity and Practice. Science Teacher Education, 86, pp 401-416.

Gurtner, J-L. (1996). L'apport de Piaget aux études pédagogiques et didactiques. Actes du colloque international Jean Piaget, avril 1996, sous la direction de Ahmed Chabchoub. Publications de l'institut Supérieur de l'Education et de la Formation Continue.

Joyce, B. R., Weil, M., & Calhoun, E. (2000). Models of teaching (6th. ed.). Needham Heights, MA: Allyn & Abacon.

Kasl, E & Yorks, L. (2002). Collaborative Inquiry for Adult Learning. New Directions for Adult and Continuing Education, 94, summer 2002.

Klein, P. D. (1999). Reopening Inquiry into Cognitive Processes in Writing-To-Learn. Educational Psychology Review, 11(3), 203-270.

Keys, C.W. & Bryan, L.A. (2001). Co-Constructing Inquiry-Based Science with Teachers : Essential Research for Lasting Reform. Journal Of Research in Science Teaching, 38 (6), pp 631-645.

Lattion, S.(2005). Développement et implémentation d'un module d'apprentissage par investigation (inquiry-based learning) au sein d'une plateforme de type PostNuke. Genève, Suisse. Mémoire de diplôme non-publié
Internet: http://tecfa.unige.ch/staf/staf-i/lattion/staf25/memoire.pdf

McKenzie, J. (1999). Scaffolding for Success. From Now On, ,The Educationnal Technology Journal, 9(4).

Nespor, J.(1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19, pp 317-328.

NRC, N. R. C. (1996). National science education standards. Washington, DC: National Academy Press.

NRC National Research Council. (2000). Inquiry and the National Science Education Standards. A Guide for Teaching and Learning: National Acadmies Press.

Sandoval, W. A., & Daniszewski, K. (2004 ). Mapping Trade-Offs in Teachers' Integration of Technology-Supported Inquiry in high School Science Classes. Journal of Science Education and Technology, 13(2).

Thelen, H. (1960). Education and the human quest. New York: Harper & Row.

Viau, R. (1997). La motivation en contexte scolaire. (2e éd. ed.). Bruxelles: De Boeck.

Vermont Elementary Science Project. (1995). Inquiry Based Science: What Does It Look Like? Connect Magazine, March-April 1995, p. 13. published by Synergy Learning.
Internet: http://www.exploratorium.edu/IFI/resources/classroom/inquiry_based.html

Villavicencio, J. (2000). Inquiry in Kindergarten. Connect Magazine, 13 (4), March/April 2000. Synergy Learning Publication.

Vosniadou, S., Ioannides, C., Dimitrakopoulou, A. & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction ,11, pp 381-419.

Watson, B. & Kopnicek, R. (1990). Teaching for Conceptual Change : confronting Children Experience. Phi Delta Kappan, May 1990, pp 680-684.