Apprentissage multimédia

De EduTech Wiki
Aller à la navigation Aller à la recherche
Bases psychopédagogiques des technologies éducatives‎‎
Module: Introduction aux théories psychologiques
◀▬▬▶
à finaliser débutant
2014/02/02
Sous-pages et productions:


N=0:


Les méthodes d'enseignement à distance impliquent la médiatisation de contenus pédagogiques sous différente formats (image, son, texte, vidéo, etc.). Cette médiatisation sous des formats différents oblige la personne qui apprend à l'aide de ces contenus médiatisés à utiliser différents canaux perceptifs ainsi que diverses fonctions cognitives à des fins de compréhension et de mémorisation. Les théories présentées dans ce chapitre tentent une approche systématique des fonctions utilisées lors de ce que nous appellerons "l'apprentissage multimédia". Si ces théories recoupent partiellement certaines théories connues sur la mémoire, elles comportent néanmoins certaines particularités et méritent d'être étudiées attentivement, plus particulièrement par les personnes qui s'intéressent à l'apprentissage en ligne.

Double codage

La théorie du double codage, une théorie de la cognition, a été conceptualisée par Allan Paivio de l’université de Western Ontario en 1971. Paivio part de l’idée que la formation d’images mentales favorise le processus d’apprentissage. Selon Paivio, il y a deux manières pour augmenter la quantité de matériel apprise : les associations verbales et l’imagerie visuelle. La théorie du double codage postule que le processus de représentation de l’information utilise à la fois des informations verbales et visuelles. Les informations visuelles et verbales sont traitées de manière différente et selon des canaux différents dans l’esprit humain, ce qui crée des représentations séparées correspondant à l'information traitée dans chaque canal. Les codes mentaux correspondant à ces représentations sont utilisés pour organiser les informations entrantes sur lesquelles on peut agir, qu’on peut stocker et qui peuvent être utilisées ultérieurement. Les deux types d'information, visuelle et verbale, peuvent être utilisés lors du rappel d'une information. Une personne peut avoir, par exemple, stocké le stimulus (sous forme de concept) de «  chien » comme étant à la fois « chien » en tant que mot et « chien » en tant qu’image d’un chien. Quand on lui demande de se rappeler du stimulus, la personne peut se rappeler soit le mot soit l’image ou encore les deux simultanément. Si c’est le mot dont elle se souvient, l’image du chien n’est pas pour autant perdue et peut toujours être rappelée à un moment ultérieur. La capacité de coder un stimulus de deux manières différentes accroit la probabilité de se souvenir de ce stimulus, si on la compare à la probabilité de se souvenir d'un stimulus qui n'aurait été codé que d'une seule manière.

Types de codes

Code analogique

Les codes analogiques sont utilisés dans la représentation mentale des images. Le codage par analogie maintient les caractéristiques perceptuelles majeures de tout ce qui est représenté de façon que les images formées mentalement soient fortement semblables au stimulus physique. C'est une représentation presque identique du stimulus physique que nous observons dans notre environnement, tel que les arbres et les rivières.

Code symbolique

Les codes symboliques sont utilisés pour la représentation des mots. Ils représentent quelque chose de manière conceptuelle et parfois arbitraire et non de manière "perceptive" (c'est-à-dire ressemblante à l'objet). De même qu'une montre peut représenter de l’information sous forme de chiffres indiquant le temps, les codes symboliques représentent l’information dans notre esprit sous forme de symboles arbitraires, tels que les mots et les combinaisons de mots pour représenter différentes idées. Chaque symbole (x, y, 1, 2, etc.) peut arbitrairement représenter autre chose que le symbole lui-même. Par exemple, la lettre "x" est souvent utilisée différemment du simple concept de "x", la 24ème lettre de l’alphabet. Elle peut être utilisée pour représenter une variable x en mathématique, ou bien le symbole de la multiplication dans une équation. Des concepts comme la multiplication peuvent être représentés symboliquement par un x car nous lui attribuons arbitrairement un concept plus profond. C'est seulement quand nous l’utilisons pour représenter ce concept plus profond que la lettre x est porteuse de ce type de sens.

Eléments en faveur de cette théorie

Beaucoup de chercheurs d’aujourd’hui sont tombés d’accord sur le fait que seuls les mots et les images sont utilisés dans la représentation mentale. Des preuves montrent que la mémoire est améliorée pour des informations verbales si une information visuelle adaptée leur est associée. De la même manière, une information visuelle peut être améliorée quand elle va de paire avec une information verbale pertinente qu'elle soit réelle ou imaginaire (Anderson & Bower, 1973). Cette théorie a été appliquée à des présentations multimédia. Parce que les présentations multimédia requièrent à la fois de la mémoire de travail spatiale et verbale, les personnes qui appliquent un double codage à l’information ont plus de chance de se souvenir de l’information quand on les teste ultérieurement.

Les données de Paivio indiquent que les participants à qui on a montré une séquence rapide d’images ainsi qu'une séquence rapide de mots et à qui on demande de s’en souvenir (quel que soit l'odre des images ou des mots), se souviennent mieux des images. Les participants se souviennent cependant mieux des mots que des images lorsqu'il leur est demandé de s'en souvenir dans le bon ordre. Ces résultats sont en accord avec l’hypothèse de Paivio selon laquelle les informations verbales sont traitées différemment des informations visuelles et que l’information verbale est supérieure à l’information visuelle quand l’ordre séquentiel est requis au cours d'une tâche de mémorisation. (Paivio, 1969).

Lee Brooks a piloté une expérience qui conforte encore l’hypothèse des deux systèmes de mémoire : il demande aux sujets d’exécuter soit une tâche visuelle où ils regardent une image et répondent à une question concernant cette image, soit une tâche verbale lors de laquelle ils écoutent une phrase et où ils répondent à des questions concernant cette phrase. Les sujets peuvent répondre aux questions soit verbalement, soit visuellement, soit manuellement. A travers cette expérience, Brooks a démontré que des interférences arrivent quand une perception visuelle est mélangée avec une manipulation visuelle et les réponses verbales interfèrent avec une tâche lors de laquelle une affirmation verbale est manipulée manuellement. Ceci étaye l’idée d’un double codage utilisé pour les représentations verbales (Sternberg 2003).

Mémoire de travail et double codage

La mémoire de travail proposée par Alan Baddeley inclut un système de traitement en deux parties avec un calepin visuo-spatial ainsi qu’une boucle phonologique qui recouvre dans les grandes lignes la théorie de Paivio.

Implications

Le travail de Paivio comporte des implications pour l’alphabétisation, pour les astuces mnémotechniques visuelles, la production d’idées, pour le design d’interface et pour le développement de matériel éducatif. Il a aussi des implications et des équivalents en sciences cognitives et en modélisation cognitive computationnelle sous la forme de modèles cognitifs à processus double et encore dans d'autres domaines (Anderson, 2005; Just et al., 2004, Sun, 2002). Il a également influencé la robotique cognitive.

Limites

La théorie du double codage comporte certaines limites. La théorie ne prend pas en considération la possibilité que la cognition soit médiatisée par autre chose que des mots et des images. Il n’y a pas eu suffisamment de recherches permettant de déterminer si les mots et les images sont le seul mode de mémorisation. Ainsi, la théorie serait infirmée si d’autres formes de code étaient découvertes. Une autre limite du double codage est qu’il ne s’applique qu’à des tests où l’on demande à des personnes de se concentrer sur le lien entre les concepts. Si aucune association entre image et mot ne peut être trouvée, il est alors plus ardu de se souvenir d’un mot à un moment ultérieur. Même si ceci constitue une limite en ce qui concerne l'efficacité de la théorie du double codage, cette dernière reste néanmoins valable dans un grand nombre de circonstances et peut être utilisée pour améliorer la mémoire.

Charge cognitive

La charge cognitive est une théorie développée par John Sweller et Fred Paas (mais d'autres chercheurs travaillent sur cette notion) qui tend à expliquer les échecs, ou les réussites, des personnes essentiellement en activité d'apprentissage mais aussi en activité de résolution de problème. La charge cognitive met en jeu la capacité de stockage d'informations en mémoire de travail et l'intégration de nouvelles informations. Comme la mémoire de travail est limitée, il est nécessaire que les informations utiles à l'accomplissement d'une tâche puissent être aisément traitées. Ces informations le seront d'autant mieux qu'elles sont intégrées à un schéma mental. Si la mémoire de travail ne peut traiter que trois données simultanément, la taille de ces données n'est, semble-t-il, pas limitée. Un schéma qui englobe toute une série d'objets et d'actions pourra être traité comme une seule donnée. Si un trop grand nombre d'informations demande à être traité, la charge cognitive sera trop importante et cela aura comme effet l'échec de la tâche ou l'impossibilité de créer ou de faire évoluer des schémas en mémoire à long terme.

Les différents types de charge cognitive

Cette charge cognitive dépend de ce qui est présenté (charge intrinsèque) et de la façon dont cela est présenté (charge extrinsèque). Ces deux aspects s'additionnent. Cela signifie que la charge intrinsèque d'une tâche peut être acceptable en mémoire de travail, mais si à cela s'ajoute une charge extrinsèque trop importante, le sujet sera en surcharge cognitive. La charge intrinsèque est liée à la tâche en elle-même, elle ne pourrait être allégée qu'au prix de suppressions d'éléments de la tâche. Cependant Schnotz note qu'une même tâche accomplie par des novices ou des experts n'engendrera pas la même surcharge cognitive. Cela démontrerait que l'expertise permet d'alléger la charge intrinsèque. La charge extrinsèque peut être modifiée car elle est liée à la façon dont est présentée l'information. Si une tâche pour être accomplie oblige au traitement quasi simultané d'informations distantes (par exemple dans un texte), la charge cognitive sera accrue puisqu'en mémoire de travail devra être conservée une information nécessaire à la compréhension d'une autre. Une co-présentation permettrait de réduire la charge cognitive.

Apprentissage et charge cognitive

Deux modalités d'apprentissage ont été particulièrement étudiées : la première a trait à tout ce qui entraîne une « dissociation de l'attention ». Sous cette expression il faut entendre la nécessité pour le sujet de traiter simultanément deux types d'informations afin de les unir en une seule. Ainsi il semble préférable d'apprendre le fonctionnement d'un ordinateur grâce à un manuel intégrant toutes les informations nécessaires plutôt qu'au moyen d'un manuel qui oblige à un constant aller-retour avec l'ordinateur. Le second élément qui peut produire une surcharge cognitive concerne la manière dont est présentée une information. Une combinaison d'informations qui combine l'oral et le visuel peut réduire la charge cognitive. Cependant, cette combinaison ne doit pas être redondante au risque de provoquer une surcharge cognitive. Chaque élément doit renforcer l'autre mais ne pas le répéter. Si ce n'est le cas, l'aide espérée provoque finalement une dissociation de l'attention. Cette influence de la modalité apparaît aussi lorsque le but de la tâche est de procéder à un apprentissage. En ayant un même objectif d'apprentissage, il est souvent possible de choisir un type de tâche à un autre. Ainsi travailler à partir d'exemples s'avère moins coûteux en termes de charge cognitive que de résoudre un problème. Cependant cette tendance peut s'inverser lorsque les apprenants ont déjà une expertise du domaine. D'ailleurs, le fait d'être expert ne permet pas toujours de répondre mieux à la tâche qu'un novice. Des informations utiles à des novices auraient un effet redondant pour des experts, qui encombreraient alors inutilement leur mémoire de travail (MDT). Cependant une autre interprétation de cette redondance présente celle-ci, non comme une surcharge, mais comme une gêne pour forger un nouveau schéma mental. Parce que la tâche est trop simple, il n'y a pas de volonté d'apprendre (i.e. transformer un schéma cognitif en un nouveau plus efficace).

L'intégration de schémas mentaux

Il est à noter que la charge cognitive peut être positive lorsqu'elle permet l'intégration de schémas mentaux. Aussi, lors d'un apprentissage, si la charge intrinsèque et la charge extrinsèque sont réduites, il faut encourager les élèves à développer des schémas cognitifs. Lorsqu'un schéma est intégré, il peut s'automatiser par la répétition des actions. C'est d'ailleurs grâce à ces schémas mentaux que la mémoire de travail peut traiter des informations qui sont en fait des combinaisons d'éléments plus simples. La lecture n'est pas un simple déchiffrement de lettres, loin de là, mais parce que ces signes sont immédiatement transformés en mots, ils ne forment qu'une information dans la MDT.

Vidéo youtube en anglais. Une animation pour illustrer la charge cognitive.

Vidéo youtube en anglais. La charge cognitive par Sweller lui-même.

Apprentissage multimédia

La théorie cognitive de l'apprentissage multimédia es basée sur trois suppositions:

  • Il y a deux canaux séparés (auditif et visuel) pour traiter l'information.
  • Ces canaux ont une capacité limitée.
  • L'apprentissage est un processus actif qui consiste à organiser, filtrer, sélectionner, intégrer l'information.

Le principe connu comme « principe multimédia » affirme que « les personnes apprennent plus en profondeur quand mots et images sont associés que seulement avec des mots ». Cependant, ajouter simplement des mots aux images n’est pas un moyen efficace pour obtenir un apprentissage multimédia. Le but est d’utiliser le média pédagogique à la lumière du fonctionnement de l’esprit humain. Ceci est la base même de la théorie de Meyer sur apprentissage multimédia.

Les humains peuvent seulement transformer une quantité finie d’information dans un canal, à un moment donné et ils donnent un sens aux informations entrantes en créant activement des représentations mentales. Mayer discute aussi le rôle des trois mémoires de stockage : sensorielle (qui reçoit des stimuli et les stocke pour un temps trois court) ; de travail (où nous transformons activement des informations pour créer des schémas mentaux) ; et long terme (le dépositoire de toute chose apprise). La théorie cognitive de l'apprentissage multimédia de Meyer propose l’idée que le cerveau n’interprète pas une présentation multimédia de mots, images et informations auditives d’une manière mutuellement exclusive mais que ces éléments sont plutôt sélectionnés et organisés dynamiquement pour produire des schémas mentaux logiques. En plus, Meyer souligne l'effet positif sur l'apprentissage (basé sur des tests de contenu et le transfert réussi de connaissance) de l'intégration d'informations nouvelles aux informations antérieures.

Des méthodes de conception pédagogiques telles que le fait de fournir des informations verbales et graphiques cohérentes, d'aider les apprenants à sélectionner les mots et les images pertinents, ou encore de réduire la charge pour un seul canal de traitement peuvent être tirées de cette théorie.

Vidéo youtube en anglais. les principes du multimedia learning de Mayer appliqués à l'ingénierie pédagogique. Très bonne explication.

Conclusion

Tous les modèles présentés dans cet article ne se valent pas exactement. Le modèle du dual coding et le modèle du multimedia learning postulent que les informations peuvent être emmagasinées sous formats visuel ou auditif et que nous posséderions des structures cognitives distinctes pour le traitement de chacun de ces types d'information. Ainsi, lors du rappel d'informations, nous pourrions utiliser soit le canal auditif soit le canal visuel. Le modèle de la charge cognitive est plus nuancé. S'il ne fait pas l'hypothèse de structures cognitives distinctes pour le traitement d'informations visuelles et d'informations auditives, il montre que, selon les conditions, les informations présentées sous différents formats peuvent représenter, ou non, une surcharge cognitive.
Ces théories revêtent un grand intérêt dans le domaine de l'apprentissage médiatisé. Elles impliquent que les choix de médiatisation effectués par l'ingénieur pédagogique doivent être réalisés avec soin, et qu'ils soient surtout justifiés par des modèles tels que ceux présentés ici.

Pour aller plus loin

Pour des raisons de droits d'auteur, nous ne pouvons pas vous donner directement accès aux articles et chapitres de livres ci-dessous. Certains d'entre eux, en particulier les articles de revues, requièrent soit d'être connecté sur le réseau de l'unige, soit d'installer le VPN qui vous permet d'accéder au réseau de l'unige depuis votre machine. D'autres sont directement accessibles sans passer par le réseau de l'unige.

Références

  • Anderson, J. R. (2005). Cognitive Psychology and its implications. New York: Worth Publishers.
  • Anderson, J. R. & Bower, G. H. (1973). Human associative memory. Washington, DC: Winston.
  • Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.
  • Brunye, T. T., Taylor, H. A., & Rapp, D. N. (2008). Repetition and dual coding in procedural multimedia presentations. Applied Cognitive Psychology, 22, 877-895.
  • Denis, M. and Mellet, E. (2002). Neural bases of image and language interactions. International Journal of Psychology, 37 (4), 204-208.
  • Just, M. et al. (2004). Imagery in sentence comprehension: an fMRI study. NeuroImage 21, 112-124.
  • Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.
  • Moreno, R., & Mayer, R. E. (2000). A coherence effect in multimedia learning: the case for minimizing irrelevant sounds in the design of multimedia instructional messages. Journal of Educational Psychology, 92, 117-125.
  • Paas, F., Renkel, A., & Sweller, J. (2004). "Cognitive Load Theory: Instructional Implications of the Interaction between Information Structures and Cognitive Architecture". Instructional Science 32: 1–8. doi:10.1023/B:TRUC.0000021806.17516.d0.
  • Paivio, A (1969). Mental Imagery in associative learning and memory. Psychological Review, 76(3), 241-263.
  • Paivio, A (1971). Imagery and verbal processes. New York: Holt, Rinehart, and Winston.
  • Paivio, A (1986). Mental representations: a dual coding approach. Oxford. England: Oxford University Press.
  • Pylyshyn, Z. W. (1973). What the mind's eye tells the mind's brain: A critique of mental imagery. Psychological Bulletin, 80, 1-24.
  • Reed, S. K. (2010). Cognition: Theories and application (8th ed.). Belmont, CA: Wadsworth Cengage Learning.
  • Sternberg, R. J. (2003). Cognitive theory (3rd ed.). Belmont, CA: Thomson Wadsworth.
  • Sun, R. (2002). Duality of the Mind. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Sweller, J. (1988). "Cognitive load during problem solving: Effects on learning". Cognitive Science 12 (2): 257–285. doi:10.1016/0364-0213(88)90023-7.
  • Sweller, J., Van Merriënboer, J., & Paas, F. (1998). "Cognitive architecture and instructional design". Educational Psychology Review 10 (3): 251–296. doi:10.1023/A:1022193728205
  • Thomas, N. J.T., "Mental imagery", The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), Edward N Zalta (ed.)

Droits d'auteur