« Cabri Géomètre » : différence entre les versions

De EduTech Wiki
Aller à la navigation Aller à la recherche
(mise en forme renvois bas de page)
 
(60 versions intermédiaires par 9 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
{{eia m}}
[[Catégorie:Logiciels de formation]]
[[Catégorie:Logiciels de formation]]


 
<pageby/>
==Description==
==Description==
{| border="1"  
{| border="1"  
Ligne 17 : Ligne 16 :
| Site du produit
| Site du produit
| Cabri Géomètre II Plus [http://www.cabri.com/v2/pages/fr/products_cabri2plus.php]
| Cabri Géomètre II Plus [http://www.cabri.com/v2/pages/fr/products_cabri2plus.php]
[http://www.cabri.net/cabri2/historique.php Historique et développement de Cabri Géomètre]
|-
| Auteurs
| Jean-Marie Laborde et son équipe, université de Grenoble
|-
|-
| Éditeur
| Éditeur| Cabrilog [http://www.cabri.com/v2/pages/fr/company_presentation.php]
| Cabrilog [http://www.cabri.com/v2/pages/fr/company_presentation.php]
|-
|-
| Prix
| Prix
Ligne 25 : Ligne 28 :
|-
|-
|}
|}


==Principes Pédagogiques: Présentation==
==Principes Pédagogiques: Présentation==
Ligne 32 : Ligne 34 :


Cabri Géomètre II est un logiciel éducatif pour l’acquisition de connaissances relatives à la construction (modélisation) des figures de géométrie . L'élève doit comprendre le logiciel, choisir une stratégie de construction, créer des figures. Cette tâche nécessite des représentations sémantiques, comme l'étudiant doit interpréter des chiffres et des symboles. Il doit également avoir des connaissances des propriétés des formes géométriques pour les construire et pour les interpréter. La représentation sémantique d'un carré serait par exemple "un figure qui a quatre cotés d’une longueur égale". Un deuxième type de représentation est nécessaire pour mettre ces figures en relation entre elles: la représentation visuo-spaciale.  
Cabri Géomètre II est un logiciel éducatif pour l’acquisition de connaissances relatives à la construction (modélisation) des figures de géométrie . L'élève doit comprendre le logiciel, choisir une stratégie de construction, créer des figures. Cette tâche nécessite des représentations sémantiques, comme l'étudiant doit interpréter des chiffres et des symboles. Il doit également avoir des connaissances des propriétés des formes géométriques pour les construire et pour les interpréter. La représentation sémantique d'un carré serait par exemple "un figure qui a quatre cotés d’une longueur égale". Un deuxième type de représentation est nécessaire pour mettre ces figures en relation entre elles: la représentation visuo-spaciale.  
L'aspect dynamique de Cabri-Géomètre permet d'exploiter l'image mentale (la représentation et la manipulation mentale) d'un objet géométrique dans l'espace chez les élèves. L'élève s'imprègne d'une image mentale de l'ensemble des mouvements subis par la figure, ce qui l'aide à visualiser et comprendre des notions d'algèbre plus abstraites.
L'aspect dynamique de Cabri-Géomètre permet d'exploiter l'image mentale (la représentation et la manipulation mentale) d'un objet géométrique dans l'espace chez les élèves. Pour comprendre l'évolution des objets construits à l'écran, l'élève devra  faire appel à des images mentales ou des connaissances sur l'espace. Ainsi, lors de la déformation ou modification d'un triangle, il devra pouvoir comprendre pourquoi certains points disparaissent lorsqu' un des angles devient obtus (cit. P. Mendelsohn [http://tecfa.unige.ch/themes/sa2/edt-eao-dos4-fiches-f-modele2.html]),ce qui l'aidera à visualiser et comprendre des notions d'algèbre plus abstraites.


Le logiciel pédagogique Cabri géomètre suit le principe d'un apprentissage actif et constructiviste. En manipulant les figures géométriques l'apprenant découvre par lui- même les propriétés de ces figures et les relations entre elles. Si le logiciel est utilisé dans le cadre d’un scénario pédagogique de travail collaboratif, on pourrait caractériser ce dispositif d'enseignement de socio-constructiviste.  
Le logiciel pédagogique Cabri géomètre suit le principe d'un apprentissage actif et constructiviste. En manipulant les figures géométriques l'apprenant découvre par lui- même les propriétés de ces figures et les relations entre elles. Si le logiciel est utilisé dans le cadre d’un scénario pédagogique de travail collaboratif, on pourrait caractériser ce dispositif d'enseignement de socio-constructiviste.  
Ligne 41 : Ligne 43 :
La motivation extrinsèque chez les élèves est cependant favorisée par le dynamisme des figures géométriques qui peuvent être manipulées, déplacées et retournées dans l'espace. Ceci surprend, intéresse et motive les élèves pour explorer des possibilités de construction et rechercher des solutions originales aux problèmes posés par l'enseignant.  
La motivation extrinsèque chez les élèves est cependant favorisée par le dynamisme des figures géométriques qui peuvent être manipulées, déplacées et retournées dans l'espace. Ceci surprend, intéresse et motive les élèves pour explorer des possibilités de construction et rechercher des solutions originales aux problèmes posés par l'enseignant.  


La construction des figures géométriques pourrait être divertissante pour un apprenant, mais celle-ci ne garantirait pas encore la compréhension des règles sous-jacentes. Ceci  ne suffirait pas à promouvoir un bon apprentissage. Avec ce logiciel éducatif, une conception de l'intelligence "profonde" (Simons, 1996) [[1]] est requise pour promouvoir des objectifs d’apprentissage précis. Une conception de l'intelligence « profonde » favorise une interaction active avec le dispositif, lorsque l'apprenant cherche à acquérir des nouvelles connaissances de façon autonome. L’apprentissage sera meilleur avec Cabri Géomètre si une stratégie existe quand à la résolution du problème donné. Cette stratégie de recherche systématique est appelée "méthode heuristique" par De Corte (1995: concerning « systematic search strategies for problem analysis and transformation, such as carefully analyzing a problem specifying the knowns and the unknowns, decomposing a problem in sub goals...".
La construction des figures géométriques pourrait être divertissante pour un apprenant, mais celle-ci ne garantirait pas encore la compréhension des règles sous-jacentes. Ceci  ne suffirait pas à promouvoir un bon apprentissage. Avec ce logiciel éducatif, une conception de l'intelligence "profonde" (Simons, 1996) [1] est requise pour promouvoir des objectifs d’apprentissage précis. Une conception de l'intelligence « profonde » favorise une interaction active avec le dispositif, lorsque l'apprenant cherche à acquérir des nouvelles connaissances de façon autonome. L’apprentissage sera meilleur avec Cabri Géomètre si une stratégie existe quand à la résolution du problème donné. Cette stratégie de recherche systématique est appelée "méthode heuristique" par De Corte (1995: concerning « systematic search strategies for problem analysis and transformation, such as carefully analyzing a problem specifying the knowns and the unknowns, decomposing a problem in sub goals...". [2]
[[2]]


L'objectif primordial de l'apprentissage avec le dispositif présent serait la résolution des problèmes et sa modalité pourrait être décrite comme "l'activité cognitive sur les propriétés pertinentes de l'information". Flavell (1987) [[3]]
L'objectif primordial de l'apprentissage avec le dispositif présent serait la résolution des problèmes et sa modalité pourrait être décrite comme "l'activité cognitive sur les propriétés pertinentes de l'information". Flavell (1987) [3]


Il serait intéressant de vérifier si l'apprenant peut transférer facilement les savoirs acquis dans Cabri Géomètre à d’autres branches scolaires. Il nous semble que l'apprentissage avec un dispositif technique, comme avec le présent logiciel, favorise peu le transfert des savoirs (p.ex. à la physique, la chimie, le dessin technique etc.). De Corte (1995) et autres chercheurs trouvent qu’il est très difficile de promouvoir le "far transfer" avec un seul dispositif éducatif donné.
Il serait intéressant de vérifier si l'apprenant peut transférer facilement les savoirs acquis dans Cabri Géomètre à d’autres branches scolaires. Il nous semble que l'apprentissage avec un dispositif technique, comme avec le présent logiciel, favorise peu le transfert des savoirs (p.ex. à la physique, la chimie, le dessin technique etc.). De Corte (1995) et autres chercheurs trouvent qu’il est très difficile de promouvoir le "far transfer" avec un seul dispositif éducatif donné.
Des modèles en 3D des solides géométriques-ou une visualisation 3D  avec un logiciel de VR (réalité virtuelle) pourraient aider à la représentation mentale (favorisant ainsi le transfert ?) des objets schématisés avec Cabri-Géomètre. Un logiciel d'animation 3D permettrait la création, la manipulation, ainsi que l'animation d'objets 3D dans l'espace virtuel hyperréaliste de la VR, « concrétisant » ainsi l'espace modélisé de Cabri-Géomètre.


Cabri-Géomètre offre de nombreuses exploitations pédagogiques possibles. L'expérience d'enseignants avec ce logiciel peut guider de nouvelles expériences. Le site de Pascal Dewaele [[4]] est très utile. Entre autres P. Dewaele a proposé différentes techniques de gestion mentale : l'utilisation de Cabri Géomètre en dessinant les formes au papier crayon sur une feuille de papier: la construction de figures dynamiques avec Cabri diffère du tracé graphique à la main, les deux démarches se complètent probablement pour une cognition optimale. La verbalisation par les élèves des étapes de construction peut aussi favoriser l'apprentissage visuo-spacial.
Des modèles en 3D des solides géométriques-ou une visualisation 3D  avec un logiciel de VR (réalité virtuelle) pourraient aider à la représentation mentale (favorisant ainsi le transfert ?) des objets schématisés avec Cabri-Géomètre. Un logiciel d'animation 3D permettrait la création, la manipulation, ainsi que l'animation d'objets 3D dans l'espace virtuel hyperréaliste de la VR, « concrétisant » ainsi l'espace modélisé de Cabri-Géomètre.


C'est exactement ce que permet le dernier logiciel du projet cabri: cabri3D v2 qui vise à l'apprentissage de la géométrie descriptive.L'analyse des volumes en 3D nous permet l'étude de la représentation de l'espace par la perspective en Arts Visuels et en architecture. Elle nous offre aussi des modèles pour les éléments en chimie, etc... [http://www.adrianoldknow.org.uk/Page5.htm Adrian Oldknow]


Cabri-Géomètre offre de nombreuses exploitations pédagogiques possibles. L'expérience d'enseignants avec ce logiciel peut guider de nouvelles expériences. Le site de Pascal Dewaele [4] est très utile. Entre autres [http://users.skynet.be/cabri/cabri/Preambul.htm P. Dewaele] a proposé différentes techniques de gestion mentale : l'utilisation de Cabri Géomètre en dessinant les formes au papier crayon sur une feuille de papier: la construction de figures dynamiques avec Cabri diffère du tracé graphique à la main, les deux démarches se complètent probablement pour une cognition optimale. La verbalisation par les élèves des étapes de construction peut aussi favoriser l'apprentissage visuo-spacial.
 
==Principes technologiques==
==Principes technologiques==
[[Image:Prof.gif]][http://perso.orange.fr/olivier.granier/thermo/images/prof.gif L'image a été prise du site: http://perso.orange.fr/olivier.granier/thermo/images/prof.gif]
[[Image:Prof.gif |frame|none]][http://perso.orange.fr/olivier.granier/thermo/images/prof.gif L'image a été prise du site: http://perso.orange.fr/olivier.granier/thermo/images/prof.gif]


[http://edutechwiki.unige.ch/fr/Discuter:Cabri_G%C3%A9om%C3%A8tre onglet discussion]
{{Incomplet}}


Les principes pédagogiques ayant été expliqués dans la section précédente, cette seconde partie se propose d'aborder quelques principes technologiques liés à Cabri Géomètre.  
Les principes pédagogiques ayant été expliqués dans la section précédente, cette seconde partie se propose d'aborder quelques principes technologiques liés à Cabri Géomètre.  
Nous pouvons à présent qualifier ce logiciel de micromonde ou d'environnement d'exploration [[Traitements_Intelligents|intelligent]], termes que nous entendons souvent dans les discours, par de nombreux auteurs. Cet environnement permet de produire des démarches applicatives en vue de formaliser des activités de mathématiques et de physique.  
Nous pouvons à présent qualifier ce logiciel de micromonde ou d'environnement d'exploration, termes que nous entendons souvent dans les discours, par de nombreux auteurs. Cet environnement permet de produire des démarches applicatives en vue de formaliser des activités de mathématiques, de physique et de géométrie.
Cabri-Géomètre est un micromonde, c'est à dire un environnement d'apprentissage ouvert, dans la mesure où l'apprenant ne doit pas suivre un sénario préalablement établi. Il est orienté vers l'acquisition de connaissances générales, comme la planification et la coordination des sous-buts dans la construction d'une figure ou encore l'abstraction d'un invariant à partir de plusieurs occurences d'un phénomène. Un autre exemple d'un environnement de ce type est le langage LOGO  P.Mendelsohn [http://tecfa.unige.ch/themes/sa2/edt-eao-dos4-fiches-f-modele2.html]


Ce simulateur à visée pédagogique offre la possibilité aux apprenants d'approfondir leurs connaissances dans ces matières. En effet, ils peuvent alors agir et afficher les résultats de leurs actions. Ils peuvent constater immédiatement si les formules entrées en commande produisent les effets escomptés. Dans le cas contraire, les conséquences seront alors repensées en vue d'être améliorées.   
Ce simulateur à visée pédagogique offre la possibilité aux apprenants d'approfondir leurs connaissances dans ces matières. En effet, ils peuvent alors agir et afficher les résultats de leurs actions. Ils peuvent constater immédiatement si les formules entrées en commande produisent les effets escomptés. Dans le cas contraire, les erreurs n'auront aucunes conséquences et pourront être améliorées.   


Toutefois, avant que les apprenants puissent être à l'aise avec les calculs, il est nécessaire de tenir compte d'une période d'[[Immersion_B-H-M|immersion]] leur permettant d'apprendre à se servir du logiciel. Ce que nous entendons par immersion est la période d'observation, de découverte des règles, des fonctionnements, etc. propre à un environnement donné. Pour ce faire, un tutoriel est proposé, ainsi qu'un manuel, des fichiers et bien entendu, l'aide de leur enseignant. Cette période est importante, car elle peut soit renforcer ou diminuer la motivation des apprenants, non seulement envers la matière enseignée, mais aussi envers le logiciel lui-même. En supposant que l'immersion ait été positive, et que cette phase d'immersion soit écoulée (selon le rythme d'apprentissage des apprenants), ils vont pouvoir s'autonomiser peu à peu et commencer à créer toutes sortes de simulations. Par exemple, ils vont tenter d'appliquer les formules apprises en cours (ou ailleurs..) en réalisant progressivement des figures simples au plus élaborées (selon le niveau des apprenants et de leur dextérité avec le logiciel). Ils pourront calculer et voir les distances entre différents points, calculer les aires, les angles, les espaces, etc. En somme, ils seront en mesure d'appliquer des formes géométriques simples ou complexes par ce logiciel. Nous pouvons facilement déduire que plus un apprenant produira des résultats positifs, c'est-à-dire après l'usage d'un ensemble de commande, et plus sa motivation en sera renforcée.  
Après voir testées nous-mêmes le logiciel en mode "démo", les deux principales caractéristiques que nous avons repérées portent sur les principes de '''multimodalité''' et de '''représentations'''. En effet, [http://www-leibniz.imag.fr/MasterEIAHD/Memoires2005/MemoireM2R-EIAHD-Hugot.pdf HUGOT (2005)] souligne que le logiciel présente des modalités de l'ordre de la "manipulation directe" et textuelle. Ainsi donc, il est possible non seulement d'agir directement sur le logiciel (en utilisant par exemple la souris, en cliquant sur les menus, les icônes, etc.), mais aussi de lire une description textuelle concernant la structure du symbole ou de la figure construite.
Cette trace écrite permet alors de pouvoir mieux verbaliser certains concepts. Mais c'est au niveau des représentations dites visuelles statiques ou dynamiques que nous portons notre attention.
Par l'usage du terme visuel nous nous référons à ce qu'en pense [http://www.unige.ch/cyberdocuments/theses2002/RandriamparanyH/these_front.html RANDRIAMPARANY RAVAOSOLO (2002)], lorsqu'il dit : "Le logiciel est entièrement programmé pour rendre visuel des opérations qui pourraient en réel être abstraites pour les apprenants. L'objectif des concepteurs était de permettre un raisonnement visuel des graphiques et des formes de façon à obtenir une meilleure visualisation mentale et donc, de faciliter les interactions entre les acteurs et le logiciel".  
Dès lors, la "visualité" des opérations possèdent bien des avantages. Cela permet d'une part, à l'utilisateur d'intervenir et d'agir directement avec les objets et d'autre part, de se construire une représentation de ces objets ou de ces symboles; difficilement perceptibles en théorie ou dans des manuels. Aussi, cette représentation rend "visible" l'implicite qui se trouve derrières des formules souvent difficiles à se représenter mentalement. De plus, cette "visibilité" immédiate des résultats produits, facilite la mémorisation des actions et fait office de "feedback" immédiat à l'utilisateur.  
De plus, toujours au niveau de l'interface, il comporte un certain nombre d'icônes et de menus longeant le haut et le côté gauche de l'écran. De ce fait, leurs usages ne pourront apporter une aisance dans la construction de symboles, qupartir du moment où l'utilisateur aura mémorisé et s'être représenté visuellement une signification pour chaque fonction.  


Cependant, les objectifs pédagogiques de ce mode d'apprentissage inductif, ne se situent pas qu'au niveau des capacités réactives. Sofiane Abdelkader (2004) [[5]] ajoute aussi que :"Ils doivent alors être utilisés sous le contrôle d'un enseignant qui est chargé d'assurer la pédagogie de l'utilisation. Ceci ne signifie pas qu'ils ne peuvent pas être utilisés dans un contexte d'autoformation, et que l'on ne peut pas apprendre en les utilisant".  
Mais si l'on sort de l'interface, et que l'on tente de creuser plus loin, ACOSTA (2006) explique qu'il existe une troisième modalité importante: les mouvements. Du point de vue des représentations, il en existe deux. L'une est dite '''"statique"''', alors que l'autre est appelée '''"dynamique"'''. Dans notre exploration du logiciel, nous sommmes restées au niveau des représentations "statiques", dans le sens où nous avons ajusté un dessin, une forme. De fait, ACOSTA (2006) poursuit en disant que la plupart des utilisateurs (apprenants) restent souvent dans l'idée d'une "géométrie par les formes (segment, droite, ligne, etc.), sans vraiment rentrer dans la géométrie: dans une logique de relations" (perpendicularité, parallélisme, angle fixe, etc.). Il ajoute que "c'est justement grâce aux déplacements que l'on peut faire deux choses en même temps: on invalide des stratégies de formes et on représente de manière dynamique une relation géométrique, qui se conserve lors du déplacement".  


Car il existe un enjeu plus conséquent pour les apprenants. Comme cet environnement presente beaucoup de composantes attractives et [[Composante_ludique|ludiques]], il se peut qu'ils soient détournés en quelques sortes de leur objectif initial. C'est justement ce que tentent d'expliquer Clot (1997) et Rabardel (1995) [[6]] à propos de la notion de catachrèse. L'idée c'est lorsqu'un mot ou un objet sont détournés de leurs usage initiale. Par exemple, une simple règle à mesurer peut devenir soudainement l'instrument de quelqu'un pour se frotter le bas du dos. Cet exemple trivial montre bien les enjeux réels qui sous tendent les micromondes. En d'autres termes, les conceptualisations théoriques (sur les mathématiques, la physique et la géométrie se transforment pour certains en "jeux" vidéos. (C)
Autrement dit, il est vrai que la matière enseignée par ce logiciel fait appel à des niveaux de symbolisation parfois difficiles à aborder. L’apprenant peut être tenté de ne rester qu’au niveau de base des activités proposées par ce logiciel : construire des formes, les étirer, les renverser, leur donner des couleurs, visualiser les effets possibles sur les formes, l'insertion d'image, les mouvements de l'image qui bouge avec l'objet, etc. Le niveau apprentissage est de comprendre que ce faisant, on construit un carré, ou un parallépipède et que ceci peut être modélisé par une formule mathématique. Si cette transposition est trop difficile, la fonction de l’outil peut être détournée vers d’autres usages (catachrèse). Il (l'apprenant) n’aura donc rien acquis en matière de géométrie. Comme le constate P. Dewaele lorsqu’il écrit sur [http://users.skynet.be/cabri/cabri/Preambul.htm son site], que : « construire ce n’est pas dessiner ». L'auteur fait aussi état de ce passage indispensable de décentration de la notion du jeu (dessiner, créer, ...) à l’élaboration de ses modèles (construire, calculer, développer, ... ).


Pour éviter cet écueil, un solide scénario pédagogique est indispensable en arrière plan, et un accompagnement nous semble nécessaire car ce logiciel ne propose pas de fonction permettant à l’apprenant de se recadrer lui-même. Il n’y a pas de « dialogue » entre le logiciel et l’apprenant. Un dialogue pourrait prendre la forme suivante : le logiciel identifie le but de l’apprenant (par exemple par une question de départ : ''que voulez-vous faire ? je souhaite construire un carré'') et rectifie ou donne des indications au fur et à mesure que l’apprenant construit sa figure. Or ce logiciel ne propose pas de telles fonctions. Nous pouvons dire qu’il ne présente aucune possibilité d’[[Adaptation_S-E-C|adaptation]] mais par contre nous avons repéré des caractéristiques liées à la [[Générativité, calcul et simulation|générativité]]. Ainsi l’utilisateur peut dessiner un élément puis opérer différentes déformations de celui-ci afin d'en observer le résultat. Non seulement le logiciel répond en temps réel aux manipulations de l’apprenant sur la figure géométrique, mais en plus les données chiffrées s’actualisent, elles aussi, en temps réel. L’intérêt pédagogique d’une telle souplesse est évident : l’élève peut simuler toutes sortes de situations sans subir, d’une part les contraintes du réel (voir l’exemple de [http://www-cabri.imag.fr/abracadabri/GeoLogique/GalerieAlice/AliceEchelle.html l’échelle]) et d’autre part en bénéficiant du statut formatif que prend alors l'erreur.


La matière enseignée par ce logiciel faisant appel à des niveaux de symbolisation parfois difficiles à aborder, l’apprenant peut être tenté de ne rester qu’au niveau ludique des activités proposées par ce logiciel. On peut définir le niveau ludique ainsi : construire des formes, les étirer, les renverser, leur donner des couleurs etc. Le niveau apprentissage est de comprendre que ce faisant, on construit un carré, ou un parallépipède et que ceci peut être modélisé par une formule mathématique. Si cette transposition est trop difficile, la fonction de l’outil peut être détournée vers d’autres usages (catachrèse). Il n’aura donc rien acquis en matière de géométrie. Dewaele,  lorsqu’il écrit sur son site [[4]], que « construire ce n’est pas dessiner » fait aussi état de ce passage indispensable du jeu (dessiner) à l’élaboration (construire).
Outre un accompagnement indispensable, un retour en arrière sur les processus d’élaboration du travail réalisé par l’élève est un bon outil pour contribuer à la construction des connaissances et ne pas en rester qu’à l’aspect ludique. Grâce à ses capacités de stockage, cette possibilité est offerte par le logiciel à travers la fonction "''session / commencer l'enregistrement''" qui « filme » l’action de l’élève. En visionnant cet enregistrement, l’apprenant n’est plus dans l’action ludique mais resitue sa production par rapport aux buts et ce faisant, peut avoir une attitude métacognitive. D’autre part, cet enregistrement peut être le support d’un travail collaboratif dans lequel, d’autres élèves  examineront et commenteront la démarche d’un élève (par exemple).
Ce retour sur les processus est un bon outil pour s’assurer que l’élève n’a pas appris « par hasard » mais a réellement construit son savoir.


Pour éviter cet écueil, un solide scénario pédagogique est nécessaire en arrière plan, et un accompagnement nous semble indispensable car ce logiciel ne propose pas de fonction permettant à l’apprenant de se recadrer lui-même. Il n’y pas de « dialogue » entre le logiciel et l’apprenant. Un dialogue pourrait prendre la forme suivante : le logiciel identifie le but de l’apprenant (par exemple par une question de départ : ''que voulez-vous faire ? je souhaite construire un carré'') et rectifie ou donne des indications au fur et à mesure que l’apprenant construit sa figure. Or ce logiciel ne propose pas de telles fonctions. On peut dire qu’il ne présente aucune fonction d’[[Adaptation_S-E-C|adaptation]].
Pour terminer, le fait que le logiciel ne peut pas valider ou invalider la réponse de l'apprenant, et surtout dire pourquoi telle réponse serait fausse. La résolution d'un problème n'est en aucun moment abordé. L'apprenant n'est pas du tout pris en main. En effet, il n'y a aucun exercice, aucun énoncé, aucune évaluation, ce logiciel n'est qu'un support, il faut réellement un accompagnement et
une pédagogie en amont.


Outre un accompagnement indispensable, un retour en arrière sur les processus d’élaboration du travail réalisé par l’élève est un bon outil pour contribuer à la construction des connaissances et ne pas en rester qu’à l’aspect ludique. La fonction "''session / commencer l'enregistrement''" « filme » l’action de l’élève. En visionnant cet enregistrement, l’apprenant n’est plus dans l’action ludique mais resitue sa production par rapport aux buts et ce faisant, peut avoir une attitude métacognitive. D’autre part, cet enregistrement peut être le support d’un travail collaboratif dans lequel, d’autres élèves examineront et commenteront la démarche d’un élève (par exemple).
==Stratégies et scénarios pédagogiques==
Ce retour sur les processus est un bon outil pour s’assurer que l’élève n’a pas appris « par hasard » mais a réellement construit son savoir. (S)
La première partie de cette article est entièrement dédiée aux principes pédagogiques à lesquelles Cabri Géomètre fait référence. La notion de "scénario pédagogique" n'est pas standardisée. De nombreuses définitions sont publiées et se recoupent.
A l'instar du scénario d'un film, le scénario pédagogique décrit de façon plus ou moins précise, un "événement" d'apprentissage imaginé au profit d'apprenants ciblés. Elaboré par des formateurs, il est destiné à expliquer et à communiquer à d'autres formateurs la "séquence" d'apprentissage. [http://www.educa.ch/dyn/]
On peut aussi définir un scénario pédagogique comme un ensemble cohérent d’activités poursuivant un ou des objectif(s) en termes d’acquisitions et conçues pour un public précis d’apprenants selon TAL [http://www.u-grenoble3.fr/stendhal/stendhal/dip/mirto/]
Selon  Schneider [http://tecfa.unige.ch/proj/seed/catalog/docs/gueret03/html/gueret03-schneider.html], la notion de "scénario pédagogique structuré" est une séquence orchestrée de phases/tâches/activités contenant typiquement des éléments de découverte, de discussion, de production, de partage et de discussion/feed-back.
Aujourd'hui la nécessité d'introduire des stratégies dans notre organisation, dans la résolution de problèmes et dans toutes nos actions de la vie quotidienne, n’est plus contestable.  Selon BOUTEGLIFINE [http://bouteglifine.ifrance.com]. Agir avec stratégie c'est adopter une méthodologie en vue de diminuer l'effet du hasard, éviter le tâtonnement et économiser le coût en toutes ressources.  
Dans le domaine de l'enseignement, en particulier, une stratégie s'impose du sommet à la base pour structurer et maîtriser les actions éducatives. Ce n'est qu'au sein d'une stratégie bien définie qu'on peut se retrouver, évaluer minutieusement et se corriger éventuellement.  


Nous avons constaté que ce logiciel favorise une apprentissage constructiviste ou même socio-constructiviste dépendant du fait que les apprenants travaillent en groupe ou seul avec ce dispositif. Le principe pédagogique a une influence forte sur le choix des stratégies pédagogiques. Une approche purement transmissive peut-être exclue comme stratégie pédagogique. Comme Cabri Géomètre est à la fois un outil pour créer un matériel d'apprentissage et à la fois ĺ'environnement pour apprendre avec ce même matériel, ce dispositif donne une grande liberté à son utilisation pédagogique. Cependant son but reste l'apprentissage des principes géométriques, ce qui inclut la compréhension et la construction des formes géométriques et leurs relation.
Par rapport à tout cela, nous pensons l’utilisation de ce logiciel dans une situation pedagogique, fait appel à  une démarche ou stratégie d’apprentissage qui peut être qualifiée d’apprentissage hiérarchique ou d’apprentissage par tâche. La matière enseignée par ce logiciel se présente avec plusieurs niveaux différents: On procède par étape pour arriver à la réalisation d’un objectif.  Les étapes sont hiérarchisées selon, une priorité qui tient compte d’un certain élément tel que le degré de difficultés. ex: Voir la construction un carré avec Dewaele [http://users.skynet.be/cabri/cabri/Preambul.htm] ou l’utilisation de Cabri géometrie dans une situation d'apprentissage présentée dans  l’article « Atelier d’informatique » de Natalie Charest[http://csrs.qc.ca/Goeland/proj/envolee/ftp/Cabri-transformations.doc] du centre Goeland.
L'objectif primordial de l'apprentissage avec le dispositif présent serait la résolution des problèmes présentés de telle sorte que l’utilisateur soit obligé de suivre une progression d’étapes successives afin d’atteindre ces objectifs. Ce sont des approches, qui nécessitent normalement une décomposition de la tâche, ou bien la définition de sous-tâches pouvant être utilisées. L’activité d’apprentissage nous semble plus efficace avec ce logiciel  si elle sui  une stratégie appropriée à la résolution du problème donné.


Même si Cabri Géomètre n'est pas prédéterminé dans son usage il favorise un approche  centrée sur la tâche. L'enseignant peut créer des exercices en construisant un dispositif géométrique pour ensuite poser une tâche à résoudre. Cette tâche peut inclure la construction des autres formes géométriques, la mesure des angles, des distances et à la fin la découverte des lois géométriques. Ce dernier type de tâche peut être caractérisé comme typique pour une apprentissage constructiviste. C'est dans cet approche où l'apprenant doit de manière autonome découvrir les lois d'un dispositif en interaction avec ce dispositif.


L'adaptation de la complexité et du guidage est facilement réalisable. Les consignes peuvent contenir des questions plus complexes et avec moins d'instructions que dans des exercices pour les débutants. Par contre il serait souhaitable que le dispositif offrirait un moyen d'intervention pour l'enseignant, surtout si ce dispositif est utilisé dans une formation exclusivement à distance.


==Stratégies et scénarios pédagogiques==
==Références==
 
Abordé en période 3.
 


==Points forts et point faibles==
[1] Simons, P.R-J. (1996). Metacognitive Strategies: teaching and assessing. In E., De Corte & F.E., Weinert (Eds), International Encyclopedia of Developmental and instructional psychology. Oxford : Pergamon. 
Développer ici une point de vue critique global sur le logiciel.


[2] De Corte, E. (1995). Learning theory and instructional science. In P. Reimann & H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp. 97-108). Oxford, UK: Elseiver Science Ltd.


==Références==
[3] Flavell, J.H. (1987). Speculations about the nature of the nature and development of the metacognition. In F.E. Weinert & R.H. Kluwe (Eds.) Metacognition, motivation and understanding. Hillsdate, NJ: Erlbaum.
'''Reférences'''


[[1]] Simons, P.R-J. (1996). Metacognitive Strategies: teaching and assessing. In E., De Corte & F.E., Weinert (Eds), International Encyclopedia of Developmental and instructional psychology. Oxford : Pergamon.
Dewaele, P. [Site web: http://users.skynet.be/cabri/cabri/Preambul.htm]


[[2]] De Corte, E. (1995). Learning theory and instructional science. In P. Reimann & H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp. 97-108). Oxford, UK: Elseiver Science Ltd.
AbdelKader, S. (2004). Structuration des données et de services pour le télé-enseignement. [Site Web: http://csidoc.insa-lyon.fr/these/2004/benadi/13_folio.pdf]


[[3]] Flavell, J.H. (1987). Speculations about the nature of the nature and development of the metacognition. In F.E. Weinert & R.H. Kluwe (Eds.) Metacognition, motivation and understanding. Hillsdate, NJ: Erlbaum.  
Clot, Y. (1997) et Rabardel, P. (1995). [Site web: http://www.cee-recherche.fr/uk/sem_intens/seance10/clot.pdf]


[[4]] Pascal Dewaele: http://users.skynet.be/cabri/cabri/Preambul.htm  Cabri-Géomètre
Hugot, F. (2005). [Site web: http://www-leibniz.imag.fr/MasterEIAHD/Memoires2005/MemoireM2R-EIAHD-Hugot.pdf ]


[[5]] AbdelKader, S. (2004). Structuration des données et de services pour le télé-enseignement. http://csidoc.insa-lyon.fr/these/2004/benadi/13_folio.pdf
Randriamparany, R. (2002) [Site web: http://www.unige.ch/cyberdocuments/theses2002/RandriamparanyH/these_front.html ]


[[6]] Clot (1997) et Rabardel (1995)http://www.cee-recherche.fr/uk/sem_intens/seance10/clot.pdf
Abra'''Ca'''da'''Bri''' : http://www-cabri.imag.fr/abracadabri/


P. Mendelsohn [http://tecfa.unige.ch/themes/sa2/edt-eao-dos4-fiches-f-modele2.html]
[http://www.adrianoldknow.org.uk/Page5.htm Adrian Oldknow]


[[Utilisateur:Vogon|Rolf]]  [[Utilisateur:Gur|Monique]]  [[Utilisateur:Jenni|Jenni]]    [[Utilisateur:Elaine|Elaine]]  [[Utilisateur:Sylviane|Sylviane]]
[[Utilisateur:Vogon|Rolf]]  [[Utilisateur:Gur|Monique]]  [[Utilisateur:Jenni|Jenni]]    [[Utilisateur:Elaine|Elaine]]  [[Utilisateur:Sylviane|Sylviane]]
[[Catégorie:Logiciels]] [[catégorie: micromondes]]

Dernière version du 22 mars 2019 à 11:54


<pageby/>

Description

Contenu enseigné la géometrie dès l'école secondaire
Fonctionnement général Ce logiciel sert à créer et à étudier des formes géométriques.
Environnement informatique Exécutable pour Windows 98, 98 SE, ME, 2000, XP et Mac OS ≥ 8.6, 10.3
Site du produit Cabri Géomètre II Plus [1]

Historique et développement de Cabri Géomètre

Auteurs Jean-Marie Laborde et son équipe, université de Grenoble
Cabrilog [2]
Prix dès 119.60 € (le 6.11.2006)

Principes Pédagogiques: Présentation

C ahier de BR ouillon I nformatique II (CABRI)

Cabri Géomètre II est un logiciel éducatif pour l’acquisition de connaissances relatives à la construction (modélisation) des figures de géométrie . L'élève doit comprendre le logiciel, choisir une stratégie de construction, créer des figures. Cette tâche nécessite des représentations sémantiques, comme l'étudiant doit interpréter des chiffres et des symboles. Il doit également avoir des connaissances des propriétés des formes géométriques pour les construire et pour les interpréter. La représentation sémantique d'un carré serait par exemple "un figure qui a quatre cotés d’une longueur égale". Un deuxième type de représentation est nécessaire pour mettre ces figures en relation entre elles: la représentation visuo-spaciale. L'aspect dynamique de Cabri-Géomètre permet d'exploiter l'image mentale (la représentation et la manipulation mentale) d'un objet géométrique dans l'espace chez les élèves. Pour comprendre l'évolution des objets construits à l'écran, l'élève devra faire appel à des images mentales ou des connaissances sur l'espace. Ainsi, lors de la déformation ou modification d'un triangle, il devra pouvoir comprendre pourquoi certains points disparaissent lorsqu' un des angles devient obtus (cit. P. Mendelsohn [3]),ce qui l'aidera à visualiser et comprendre des notions d'algèbre plus abstraites.

Le logiciel pédagogique Cabri géomètre suit le principe d'un apprentissage actif et constructiviste. En manipulant les figures géométriques l'apprenant découvre par lui- même les propriétés de ces figures et les relations entre elles. Si le logiciel est utilisé dans le cadre d’un scénario pédagogique de travail collaboratif, on pourrait caractériser ce dispositif d'enseignement de socio-constructiviste.

Cependant, un atelier de prise en main de Cabri-Géomètre est recommandé avant son utilisation dans un scénario pédagogique. Des problèmes de manipulation de base de ce logiciel pourraient sinon entraver la leçon et retarder les acquisitions ultérieure des élèves, leurs ressources cognitives étant utilisées à la résolution de problèmes techniques.

A la différence d’un logiciel ludique se caractérisant plutôt par une motivation extrinsèque (par exemple, réussir un bon score), Cabri-Géomètre requiert une motivation intrinsèque.Une motivation intrinsèque se caractérise par une source de motivation qui vient de l'apprenant lui-même. Ces dispositions ne sont pas forcément présentes chez tous les étudiants d'un cours de géométrie. La motivation extrinsèque chez les élèves est cependant favorisée par le dynamisme des figures géométriques qui peuvent être manipulées, déplacées et retournées dans l'espace. Ceci surprend, intéresse et motive les élèves pour explorer des possibilités de construction et rechercher des solutions originales aux problèmes posés par l'enseignant.

La construction des figures géométriques pourrait être divertissante pour un apprenant, mais celle-ci ne garantirait pas encore la compréhension des règles sous-jacentes. Ceci ne suffirait pas à promouvoir un bon apprentissage. Avec ce logiciel éducatif, une conception de l'intelligence "profonde" (Simons, 1996) [1] est requise pour promouvoir des objectifs d’apprentissage précis. Une conception de l'intelligence « profonde » favorise une interaction active avec le dispositif, lorsque l'apprenant cherche à acquérir des nouvelles connaissances de façon autonome. L’apprentissage sera meilleur avec Cabri Géomètre si une stratégie existe quand à la résolution du problème donné. Cette stratégie de recherche systématique est appelée "méthode heuristique" par De Corte (1995: concerning « systematic search strategies for problem analysis and transformation, such as carefully analyzing a problem specifying the knowns and the unknowns, decomposing a problem in sub goals...". [2]

L'objectif primordial de l'apprentissage avec le dispositif présent serait la résolution des problèmes et sa modalité pourrait être décrite comme "l'activité cognitive sur les propriétés pertinentes de l'information". Flavell (1987) [3]

Il serait intéressant de vérifier si l'apprenant peut transférer facilement les savoirs acquis dans Cabri Géomètre à d’autres branches scolaires. Il nous semble que l'apprentissage avec un dispositif technique, comme avec le présent logiciel, favorise peu le transfert des savoirs (p.ex. à la physique, la chimie, le dessin technique etc.). De Corte (1995) et autres chercheurs trouvent qu’il est très difficile de promouvoir le "far transfer" avec un seul dispositif éducatif donné.

Des modèles en 3D des solides géométriques-ou une visualisation 3D avec un logiciel de VR (réalité virtuelle) pourraient aider à la représentation mentale (favorisant ainsi le transfert ?) des objets schématisés avec Cabri-Géomètre. Un logiciel d'animation 3D permettrait la création, la manipulation, ainsi que l'animation d'objets 3D dans l'espace virtuel hyperréaliste de la VR, « concrétisant » ainsi l'espace modélisé de Cabri-Géomètre.

C'est exactement ce que permet le dernier logiciel du projet cabri: cabri3D v2 qui vise à l'apprentissage de la géométrie descriptive.L'analyse des volumes en 3D nous permet l'étude de la représentation de l'espace par la perspective en Arts Visuels et en architecture. Elle nous offre aussi des modèles pour les éléments en chimie, etc... Adrian Oldknow

Cabri-Géomètre offre de nombreuses exploitations pédagogiques possibles. L'expérience d'enseignants avec ce logiciel peut guider de nouvelles expériences. Le site de Pascal Dewaele [4] est très utile. Entre autres P. Dewaele a proposé différentes techniques de gestion mentale : l'utilisation de Cabri Géomètre en dessinant les formes au papier crayon sur une feuille de papier: la construction de figures dynamiques avec Cabri diffère du tracé graphique à la main, les deux démarches se complètent probablement pour une cognition optimale. La verbalisation par les élèves des étapes de construction peut aussi favoriser l'apprentissage visuo-spacial.

Principes technologiques

Prof.gif

L'image a été prise du site: http://perso.orange.fr/olivier.granier/thermo/images/prof.gif


Les principes pédagogiques ayant été expliqués dans la section précédente, cette seconde partie se propose d'aborder quelques principes technologiques liés à Cabri Géomètre. Nous pouvons à présent qualifier ce logiciel de micromonde ou d'environnement d'exploration, termes que nous entendons souvent dans les discours, par de nombreux auteurs. Cet environnement permet de produire des démarches applicatives en vue de formaliser des activités de mathématiques, de physique et de géométrie. Cabri-Géomètre est un micromonde, c'est à dire un environnement d'apprentissage ouvert, dans la mesure où l'apprenant ne doit pas suivre un sénario préalablement établi. Il est orienté vers l'acquisition de connaissances générales, comme la planification et la coordination des sous-buts dans la construction d'une figure ou encore l'abstraction d'un invariant à partir de plusieurs occurences d'un phénomène. Un autre exemple d'un environnement de ce type est le langage LOGO P.Mendelsohn [4]

Ce simulateur à visée pédagogique offre la possibilité aux apprenants d'approfondir leurs connaissances dans ces matières. En effet, ils peuvent alors agir et afficher les résultats de leurs actions. Ils peuvent constater immédiatement si les formules entrées en commande produisent les effets escomptés. Dans le cas contraire, les erreurs n'auront aucunes conséquences et pourront être améliorées.

Après voir testées nous-mêmes le logiciel en mode "démo", les deux principales caractéristiques que nous avons repérées portent sur les principes de multimodalité et de représentations. En effet, HUGOT (2005) souligne que le logiciel présente des modalités de l'ordre de la "manipulation directe" et textuelle. Ainsi donc, il est possible non seulement d'agir directement sur le logiciel (en utilisant par exemple la souris, en cliquant sur les menus, les icônes, etc.), mais aussi de lire une description textuelle concernant la structure du symbole ou de la figure construite. Cette trace écrite permet alors de pouvoir mieux verbaliser certains concepts. Mais c'est au niveau des représentations dites visuelles statiques ou dynamiques que nous portons notre attention. Par l'usage du terme visuel nous nous référons à ce qu'en pense RANDRIAMPARANY RAVAOSOLO (2002), lorsqu'il dit : "Le logiciel est entièrement programmé pour rendre visuel des opérations qui pourraient en réel être abstraites pour les apprenants. L'objectif des concepteurs était de permettre un raisonnement visuel des graphiques et des formes de façon à obtenir une meilleure visualisation mentale et donc, de faciliter les interactions entre les acteurs et le logiciel". Dès lors, la "visualité" des opérations possèdent bien des avantages. Cela permet d'une part, à l'utilisateur d'intervenir et d'agir directement avec les objets et d'autre part, de se construire une représentation de ces objets ou de ces symboles; difficilement perceptibles en théorie ou dans des manuels. Aussi, cette représentation rend "visible" l'implicite qui se trouve derrières des formules souvent difficiles à se représenter mentalement. De plus, cette "visibilité" immédiate des résultats produits, facilite la mémorisation des actions et fait office de "feedback" immédiat à l'utilisateur. De plus, toujours au niveau de l'interface, il comporte un certain nombre d'icônes et de menus longeant le haut et le côté gauche de l'écran. De ce fait, leurs usages ne pourront apporter une aisance dans la construction de symboles, qu'à partir du moment où l'utilisateur aura mémorisé et s'être représenté visuellement une signification pour chaque fonction.

Mais si l'on sort de l'interface, et que l'on tente de creuser plus loin, ACOSTA (2006) explique qu'il existe une troisième modalité importante: les mouvements. Du point de vue des représentations, il en existe deux. L'une est dite "statique", alors que l'autre est appelée "dynamique". Dans notre exploration du logiciel, nous sommmes restées au niveau des représentations "statiques", dans le sens où nous avons ajusté un dessin, une forme. De fait, ACOSTA (2006) poursuit en disant que la plupart des utilisateurs (apprenants) restent souvent dans l'idée d'une "géométrie par les formes (segment, droite, ligne, etc.), sans vraiment rentrer dans la géométrie: dans une logique de relations" (perpendicularité, parallélisme, angle fixe, etc.). Il ajoute que "c'est justement grâce aux déplacements que l'on peut faire deux choses en même temps: on invalide des stratégies de formes et on représente de manière dynamique une relation géométrique, qui se conserve lors du déplacement".

Autrement dit, il est vrai que la matière enseignée par ce logiciel fait appel à des niveaux de symbolisation parfois difficiles à aborder. L’apprenant peut être tenté de ne rester qu’au niveau de base des activités proposées par ce logiciel : construire des formes, les étirer, les renverser, leur donner des couleurs, visualiser les effets possibles sur les formes, l'insertion d'image, les mouvements de l'image qui bouge avec l'objet, etc. Le niveau apprentissage est de comprendre que ce faisant, on construit un carré, ou un parallépipède et que ceci peut être modélisé par une formule mathématique. Si cette transposition est trop difficile, la fonction de l’outil peut être détournée vers d’autres usages (catachrèse). Il (l'apprenant) n’aura donc rien acquis en matière de géométrie. Comme le constate P. Dewaele lorsqu’il écrit sur son site, que : « construire ce n’est pas dessiner ». L'auteur fait aussi état de ce passage indispensable de décentration de la notion du jeu (dessiner, créer, ...) à l’élaboration de ses modèles (construire, calculer, développer, ... ).

Pour éviter cet écueil, un solide scénario pédagogique est indispensable en arrière plan, et un accompagnement nous semble nécessaire car ce logiciel ne propose pas de fonction permettant à l’apprenant de se recadrer lui-même. Il n’y a pas de « dialogue » entre le logiciel et l’apprenant. Un dialogue pourrait prendre la forme suivante : le logiciel identifie le but de l’apprenant (par exemple par une question de départ : que voulez-vous faire ? je souhaite construire un carré) et rectifie ou donne des indications au fur et à mesure que l’apprenant construit sa figure. Or ce logiciel ne propose pas de telles fonctions. Nous pouvons dire qu’il ne présente aucune possibilité d’adaptation mais par contre nous avons repéré des caractéristiques liées à la générativité. Ainsi l’utilisateur peut dessiner un élément puis opérer différentes déformations de celui-ci afin d'en observer le résultat. Non seulement le logiciel répond en temps réel aux manipulations de l’apprenant sur la figure géométrique, mais en plus les données chiffrées s’actualisent, elles aussi, en temps réel. L’intérêt pédagogique d’une telle souplesse est évident : l’élève peut simuler toutes sortes de situations sans subir, d’une part les contraintes du réel (voir l’exemple de l’échelle) et d’autre part en bénéficiant du statut formatif que prend alors l'erreur.

Outre un accompagnement indispensable, un retour en arrière sur les processus d’élaboration du travail réalisé par l’élève est un bon outil pour contribuer à la construction des connaissances et ne pas en rester qu’à l’aspect ludique. Grâce à ses capacités de stockage, cette possibilité est offerte par le logiciel à travers la fonction "session / commencer l'enregistrement" qui « filme » l’action de l’élève. En visionnant cet enregistrement, l’apprenant n’est plus dans l’action ludique mais resitue sa production par rapport aux buts et ce faisant, peut avoir une attitude métacognitive. D’autre part, cet enregistrement peut être le support d’un travail collaboratif dans lequel, d’autres élèves examineront et commenteront la démarche d’un élève (par exemple). Ce retour sur les processus est un bon outil pour s’assurer que l’élève n’a pas appris « par hasard » mais a réellement construit son savoir.

Pour terminer, le fait que le logiciel ne peut pas valider ou invalider la réponse de l'apprenant, et surtout dire pourquoi telle réponse serait fausse. La résolution d'un problème n'est en aucun moment abordé. L'apprenant n'est pas du tout pris en main. En effet, il n'y a aucun exercice, aucun énoncé, aucune évaluation, ce logiciel n'est qu'un support, il faut réellement un accompagnement et une pédagogie en amont.

Stratégies et scénarios pédagogiques

La première partie de cette article est entièrement dédiée aux principes pédagogiques à lesquelles Cabri Géomètre fait référence. La notion de "scénario pédagogique" n'est pas standardisée. De nombreuses définitions sont publiées et se recoupent. A l'instar du scénario d'un film, le scénario pédagogique décrit de façon plus ou moins précise, un "événement" d'apprentissage imaginé au profit d'apprenants ciblés. Elaboré par des formateurs, il est destiné à expliquer et à communiquer à d'autres formateurs la "séquence" d'apprentissage. [5] On peut aussi définir un scénario pédagogique comme un ensemble cohérent d’activités poursuivant un ou des objectif(s) en termes d’acquisitions et conçues pour un public précis d’apprenants selon TAL [6] Selon Schneider [7], la notion de "scénario pédagogique structuré" est une séquence orchestrée de phases/tâches/activités contenant typiquement des éléments de découverte, de discussion, de production, de partage et de discussion/feed-back. Aujourd'hui la nécessité d'introduire des stratégies dans notre organisation, dans la résolution de problèmes et dans toutes nos actions de la vie quotidienne, n’est plus contestable. Selon BOUTEGLIFINE [8]. Agir avec stratégie c'est adopter une méthodologie en vue de diminuer l'effet du hasard, éviter le tâtonnement et économiser le coût en toutes ressources. Dans le domaine de l'enseignement, en particulier, une stratégie s'impose du sommet à la base pour structurer et maîtriser les actions éducatives. Ce n'est qu'au sein d'une stratégie bien définie qu'on peut se retrouver, évaluer minutieusement et se corriger éventuellement.

Nous avons constaté que ce logiciel favorise une apprentissage constructiviste ou même socio-constructiviste dépendant du fait que les apprenants travaillent en groupe ou seul avec ce dispositif. Le principe pédagogique a une influence forte sur le choix des stratégies pédagogiques. Une approche purement transmissive peut-être exclue comme stratégie pédagogique. Comme Cabri Géomètre est à la fois un outil pour créer un matériel d'apprentissage et à la fois ĺ'environnement pour apprendre avec ce même matériel, ce dispositif donne une grande liberté à son utilisation pédagogique. Cependant son but reste l'apprentissage des principes géométriques, ce qui inclut la compréhension et la construction des formes géométriques et leurs relation. Par rapport à tout cela, nous pensons l’utilisation de ce logiciel dans une situation pedagogique, fait appel à une démarche ou stratégie d’apprentissage qui peut être qualifiée d’apprentissage hiérarchique ou d’apprentissage par tâche. La matière enseignée par ce logiciel se présente avec plusieurs niveaux différents: On procède par étape pour arriver à la réalisation d’un objectif. Les étapes sont hiérarchisées selon, une priorité qui tient compte d’un certain élément tel que le degré de difficultés. ex: Voir la construction un carré avec Dewaele [9] ou l’utilisation de Cabri géometrie dans une situation d'apprentissage présentée dans l’article « Atelier d’informatique » de Natalie Charest[10] du centre Goeland.

L'objectif primordial de l'apprentissage avec le dispositif présent serait la résolution des problèmes présentés de telle sorte que l’utilisateur soit obligé de suivre une progression d’étapes successives afin d’atteindre ces objectifs. Ce sont des approches, qui nécessitent normalement une décomposition de la tâche, ou bien la définition de sous-tâches pouvant être utilisées. L’activité d’apprentissage nous semble plus efficace avec ce logiciel si elle sui une stratégie appropriée à la résolution du problème donné.

Même si Cabri Géomètre n'est pas prédéterminé dans son usage il favorise un approche centrée sur la tâche. L'enseignant peut créer des exercices en construisant un dispositif géométrique pour ensuite poser une tâche à résoudre. Cette tâche peut inclure la construction des autres formes géométriques, la mesure des angles, des distances et à la fin la découverte des lois géométriques. Ce dernier type de tâche peut être caractérisé comme typique pour une apprentissage constructiviste. C'est dans cet approche où l'apprenant doit de manière autonome découvrir les lois d'un dispositif en interaction avec ce dispositif.

L'adaptation de la complexité et du guidage est facilement réalisable. Les consignes peuvent contenir des questions plus complexes et avec moins d'instructions que dans des exercices pour les débutants. Par contre il serait souhaitable que le dispositif offrirait un moyen d'intervention pour l'enseignant, surtout si ce dispositif est utilisé dans une formation exclusivement à distance.

Références

[1] Simons, P.R-J. (1996). Metacognitive Strategies: teaching and assessing. In E., De Corte & F.E., Weinert (Eds), International Encyclopedia of Developmental and instructional psychology. Oxford : Pergamon.

[2] De Corte, E. (1995). Learning theory and instructional science. In P. Reimann & H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp. 97-108). Oxford, UK: Elseiver Science Ltd.

[3] Flavell, J.H. (1987). Speculations about the nature of the nature and development of the metacognition. In F.E. Weinert & R.H. Kluwe (Eds.) Metacognition, motivation and understanding. Hillsdate, NJ: Erlbaum.

Dewaele, P. [Site web: http://users.skynet.be/cabri/cabri/Preambul.htm]

AbdelKader, S. (2004). Structuration des données et de services pour le télé-enseignement. [Site Web: http://csidoc.insa-lyon.fr/these/2004/benadi/13_folio.pdf]

Clot, Y. (1997) et Rabardel, P. (1995). [Site web: http://www.cee-recherche.fr/uk/sem_intens/seance10/clot.pdf]

Hugot, F. (2005). [Site web: http://www-leibniz.imag.fr/MasterEIAHD/Memoires2005/MemoireM2R-EIAHD-Hugot.pdf ]

Randriamparany, R. (2002) [Site web: http://www.unige.ch/cyberdocuments/theses2002/RandriamparanyH/these_front.html ]

AbraCadaBri : http://www-cabri.imag.fr/abracadabri/

P. Mendelsohn [11] Adrian Oldknow

Rolf Monique Jenni Elaine Sylviane