« Manipuler des données avec dplyr » : différence entre les versions
Ligne 86 : | Ligne 86 : | ||
Avec la commande <code>str(gapminder)</code> on peut accéder à des informations sur le jeu de données : | Avec la commande <code>str(gapminder)</code> on peut accéder à des informations sur le jeu de données : | ||
<source> | <source lang="R"> | ||
tibble[,6] [1,704 x 6] (S3: tbl_df/tbl/data.frame) | tibble[,6] [1,704 x 6] (S3: tbl_df/tbl/data.frame) | ||
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ... | $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ... | ||
Ligne 98 : | Ligne 98 : | ||
Avec la fonction <code>glimpse(gapminder)</code> on peut implémenter la structure avec un aperçu des données contenues : | Avec la fonction <code>glimpse(gapminder)</code> on peut implémenter la structure avec un aperçu des données contenues : | ||
<source> | <source lang="R"> | ||
Rows: 1,704 | Rows: 1,704 | ||
Columns: 6 | Columns: 6 | ||
Ligne 123 : | Ligne 123 : | ||
FRA, GER, CHE, ...). Nous utiliserons ce deuxième jeu de données pour montrer des opérations qui impliquent deux tableaux. La commande <code>str(country_codes)</code> affiche la structure suivante : | FRA, GER, CHE, ...). Nous utiliserons ce deuxième jeu de données pour montrer des opérations qui impliquent deux tableaux. La commande <code>str(country_codes)</code> affiche la structure suivante : | ||
<source> | <source lang="R"> | ||
tibble[,3] [187 x 3] (S3: tbl_df/tbl/data.frame) | tibble[,3] [187 x 3] (S3: tbl_df/tbl/data.frame) | ||
$ country : chr [1:187] "Afghanistan" "Albania" "Algeria" "Angola" ... | $ country : chr [1:187] "Afghanistan" "Albania" "Algeria" "Angola" ... |
Version du 1 septembre 2021 à 19:13
Introduction
dplyr est un paquet de R faisant partie de l'écosystème Tidyverse utile pour manipuler des données en format rectangulaire (i.e. lignes et colonnes). Il utilise une grammaire basée sur les actions les plus fréquentes dans la manipulations des données comme par exemple filtrer, agréger, sélectionner, transformer, etc. Le paquet dplyr peut être utilisé dans plusieurs contextes, comme par exemple :
- le nettoyage des données brutes importées avec R
- l'agrégation de données depuis une ou plusieurs sources
- interroger les données à travers des filtres complexes
- l'organisation de données pour l'affichage dans des reports, pages web, etc.
- la mise en forme de données pour visualisation des données avec R, notamment en combinaison avec le paquet ggplot2.
Cet article propose un survol des manipulations les plus fréquentes, ainsi que des ressources complémentaires.
Prérequis
L'article nécessite de connaissances de base de R, notamment au niveau des structures de données de type data.frame
ou tibble
(i.e. organisées en lignes et colonnes). La lecture préalable de l'article Introduction à Tidyverse est également recommandée.
Installation et chargement
dplyr est l'un des paquets qui composent l'écosystème Tidyverse. Il peut donc être installé deux deux manières :
- Paquet individuel
- Paquet global Tidyverse
Paquet dplyr individuel
Pour installer seulement le paquet dplyr, la commande est la suivante :
# Installation individuelle
install.packages("dplyr")
Pour utiliser le paquet il faudra à ce moment le charger :
library(dplyr)
Paquet global Tidyverse
Si vous installez le paquet global Tidyverse, dplyr est installé automatiquement.
# Installation de Tidyverse
install.packages("tidyverse")
L'installation de l'écosystème Tidyverse est conseillée, car dplyr peut s'intégrer facilement avec d'autres manipulations sur les données comme par exemple la visualisation des données avec ggplot2.
Pour utiliser le paquet vous pouvez à ce moment choisir si :
- Charger seulement dplyr
library(dplyr)
- Charger tous les paquets de Tidyverse
library(tidyverse)
Voir Introduction à Tidyverse pour plus de détails.
Données gapminder utilisées dans le tutoriel
Pour faciliter la compréhension des différents éléments de dplyr, cet article utilise un jeu de données issue du paquet gapminder (Bryan, 2017), créé par Jennifer Bryan, qui est un extrait des données collectées par la fondation Gapminder, un institution indépendante qui utilise les données afin de modifier des mauvaises conceptions que les personnes ont souvent à propos de phénomènes globaux.
Cette section explique comment installer le paquet et fourni une description des donnée disponibles. Au moment de l'écriture de ce tutoriel, la version du paquet gapminder est la 0.3.0
(voir versionnage sémantique). Le paquet propose des données sur plusieurs nations du monde. À la version 0.3.0, les données sont disponibles jusqu'en 2007.
Installation et chargement
Pour disposer des données, il faut d'abord installer le paquet avec la commande :
install.packages("gapminder")
À ce moment, il faut charger le paquet pour pouvoir l'utiliser
library(gapminder)
Description des données
Une fois chargé le paquet avec l'instruction library(gapminder)
vous aurez accès à deux références symboliques :
gapminder
gapminder_unfiltered
Les deux jeux de données ont la même structure, mais gapminder
compte seulement 1'704 observations, tandis que gapminder_unfiltered en a 3'313. Nous allons utiliser gapminder
dans la suite de cet article.
Avec la commande str(gapminder)
on peut accéder à des informations sur le jeu de données :
tibble[,6] [1,704 x 6] (S3: tbl_df/tbl/data.frame)
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
$ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
$ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
$ gdpPercap: num [1:1704] 779 821 853 836 740 ...
Avec la fonction glimpse(gapminder)
on peut implémenter la structure avec un aperçu des données contenues :
Rows: 1,704
Columns: 6
$ country <fct> "Afghanistan", "Afghanistan", "Afghanistan", "Afghanistan", "Afghanista~
$ continent <fct> Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia,~
$ year <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007,~
$ lifeExp <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 40.822, 41.674,~
$ pop <int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372, 12881816, 138~
$ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.1134, 978.0114, 8~
Si vous utilisez RStudio, vous pouvez voir directement les données en format spreadsheet avec l'instruction View(gapminder)
.
Ces commandes nous permettent de découvrir que le jeu de données gapminder
est organisé dans un format long (voir la section Tidy data de l'Introduction à Tidyverse), avec 6 variables et 1'704 observations. En combinant des informations issues des commandes précédentes, ainsi que depuis la documentation du paquet, on découvre les informations suivantes à propos des six variables du jeu de données :
country
: le nom de la nation, un facteur avec 142 modalités, c'est-à-dire 142 nations différentes. La documentation suggère que pour chaque nation, il y existe 12 observations (i.e. lignes) avec les données recueillies depuis 1952 à 2007, avec des intervalles fixes de 5 ans. On peut récupérer les noms des nations avec la commandelevels(gapminder$country)
continent
: le nom du continent dans lequel se trouve la nation, un facteur avec 5 modalités, donc les 5 continents Africa, America, Asia, Europe, Oceania. On peut récupérer les noms des facteurs avec la commandelevels(gapminder$continent)
year
: l'année de référence. Comme indiqué plus haut, les données couvrent la période entre 1951 et 2007, avec 5 années d'intervalles. On peut récupérer les différentes années avec la commandeunique(gapminder$year)
(car il s'agit de chiffres et pas d'un facteur comme les variables précédentes).lifeExp
: l'espérance de vie à la naissance en annéespop
: la population de la nation à l'année de référencegdpPercap
: le produit intérieur brut en dollar international (Geary-Khamis), une mesure qui ajuste pour la différence au fil du temps. Les détails économiques ne sont pas nécessaires pour suivre le tutoriel, il suffit de retenir que cette variable représente grosso-modo la richesse d'une nation de manière standardisée et donc comparable entre pays et années.
Le paquet met à disposition également une autre référence symbolique, country_codes
: un jeu de données qui contient notamment l’abréviation de la nation (e.g.
FRA, GER, CHE, ...). Nous utiliserons ce deuxième jeu de données pour montrer des opérations qui impliquent deux tableaux. La commande str(country_codes)
affiche la structure suivante :
tibble[,3] [187 x 3] (S3: tbl_df/tbl/data.frame)
$ country : chr [1:187] "Afghanistan" "Albania" "Algeria" "Angola" ...
$ iso_alpha: chr [1:187] "AFG" "ALB" "DZA" "AGO" ...
$ iso_num : int [1:187] 4 8 12 24 32 51 533 36 40 31 ...
Chargement des paquets nécessaires à suivre le tutoriel
Pour suivre le tutoriel, il est donc nécessaire de charger au moins les deux paquets tidyverse (qui incorpore également dplyr) et gapminder. En d'autres termes, il serait bien que votre fichier de script R commence avec les lignes de code suivantes :
library(tidyverse)
library(gapminder)
Le chargement de tidyverse est recommandé, car le tutoriel propose occasionnellement des croisement avec d'autres paquets de l'écosystème Tidyverse pour montrer l'intégration de la manipulation des données avec d'autres opérations utiles.
Notation sur le style de codage utilisé
Ce tutoriel essaie de montrer les aspects les plus relevants du code avec dplyr et pour ce faire essaie de maintenir une certaine consistence dans le style de codage utilisé. Voici quelques indications qui peuvent aider à mieux suivre le code.
Utilisation du pipe
Comme indiqué dans l'introduction à Tidyverse, l'écosystème favorise l'enchaînement séquentiel des manipulations à travers l'opérateur pipe %>%
. L'utilisation de cet opérateur n'est cependant pas indispensable, car les fonctions de dplyr peuvent être utilisé également comme fonction normales. Pour rappel voici deux exemples qui obtiennent les deux seulement les observations relatives à l'année 2002 et les trient en ordre de population ascendante. Le fonctionnement des fonctions spécifiques sera abordés plus bas, pour l'instant l'attention est portée sur la syntaxe :
# Notation "classique"
classique <- arrange(filter(gapminder, year == 2002), pop)
# Notation avec pipe
avec_pipe <- gapminder %>%
filter(year == 2002) %>%
arrange(pop)
# Confirmer que c'est la même chose
identical(classique, avec_pipe) # Donne TRUE
Le résultat de l'évaluation de la dernière ligne sera TRUE
, ce qui confirme que les deux notations obtiennent exactement le même résultat. Cependant, la notation avec pipe est plus simple à lire, surtout si on utilise l'indentation et une opération par ligne, suivi par le pipe.
Pour rappel, le pipe marche selon le principe que le premier argument passé à une fonction est un data.frame ou un tibble, et que chaque fonction retourne exactement le même type d'object. De cette manière, on peut construire des chaines d'instructions comme dans l'example avec notation pipe.
|>
. Si vous préférez cette notation, vous pouvez remplacer le pipe %>%
avec |>
. Utilisation minimaliste de références symboliques
Une autre pratique utilisée dans ce tutoriel est celle d'éviter au maximum de créer des références symboliques pour leur attribuer les résultats d'une manipulation avec dplyr, et d'écrire plutôt des instructions qui sont évaluées directement. L'utilisation de références symboliques sera adopté seulement si elle apporte des avantages, par exemple en termes d'alternatives ou de traitement ultérieur. Voici du code qui explique ce principe :
# Exécution directe, sans référence symbolique
gapminder %>%
filter(year == 2007)
# Attribution à une référence symbolique "data_2007" pour utilisation ultérieur
data_2007 <- gapminder %>%
filter(year == 2007)
# Trier en ordre de population ascendant
data_2007 %>%
arrange(pop)
# trier en ordre de population descendante
data_2007 %>%
arrange(desc(pop))
Manipulations de base sur un tableau
Cette section illustre des manipulations de base qui sont souvent utiles dans le traitement de données comme :
- sélectionner un sous-groupe de variables/colonnes
- filtrer des observations/lignes selon certains critères
- trier les données selon un ordre spécifique