Computer-supported collaborative learning
Definition
- "Put briefly, CSCL is focused on how collaborative learning supported by technology can enhance peer interaction and work in groups, and how collaboration and technology facilitate sharing and distributing of knowledge and expertise among community members." (Lipponen, 2002)
Developments in ICT offer increasing possibilities for collaborative learning. E.g. technology enhanced learning environments can provide advanced means for the production of knowledge and constructive communication, and interactive and collaborative learning in (and between) classrooms and between teachers and learners.
Short history
“Collaborative learning is the subject of study in a wide variety of disciplines such as developmental psychology (e.g., sociocognitive conflict), social psychology (person perception, motivation, group processes), sociology (status, power and authority), cognitive psychology (how learning occurs, learning outcomes) and sociocultural perspectives (cultural influence on interaction, mediation of learning)” ( Cindy E. Hmelo-Silver). Therefore it is not easy to decide when and where to start CSCL history.
- Earliest research that led to CSCL started in the 1980s. E.g. the "Toronto School" and its CSILE project (Marlene Scardamalia and Carl Bereiter), the ENFL project at Gallaudet that initiated computer-supported collaborative writing.
- According to the education encylopedia, “in 1983 a workshop on the topic of "joint problem solving and microcomputers" was held at LCHC. The organizers of this workshop, Mike Cole, Naomi Miyake, and Denis Newman, were all to assume prominent roles in the CSCL community as it developed. Six years later, a NATO-sponsored workshop was held in Maratea, Italy.”
- According to Pierre Dillenbourg (Strijbos, 2004) the first workshop on CSCL was held in 1988.
- The first full CSCL conference was organized at Indiana University (Bloomington) in 1995 and is held since then every two years. CSCL 1997 already included a large list of "topics of interest": case-based methods of instruction, classroom discourse processes, collaboration and conceptual change, collaborative composition, computers, networks and other relevant technological developments, design and interface issues, distance education, educational groupware, educational implications of Activity Theory, instructional assessment issues, instructional strategies and approaches, K-12 collaborative learning strategies, microworlds, MUDs, and multi-user simulation, problem solving, research in technologically-mediated communication, situated learning and learning in the workplace, socially-oriented theories of learning, theories of collaboration and learning, tools for open-ended or termless learning, tools to support teaching in collaborative settings.
- In 2006, the International Journal of Computer-Supported Collaborative Learning aim is “to promote a deeper understanding of the nature, theory and practice of the uses of computer-supported collaborative learning. A main focus is on how people learn in the context of collaborative activity and how to design the technological settings for collaboration.”
- Influence of CSCW
According to Hoare CSCL has grown out of CSCW. This may not be entirely true, but indeed CSCL is younger than CSCW (mi-1980's) and there are common features, i.e. computer supported communication and activities. According to the same author, the following table indicates the main differences between CSCW and CSCL:
CSCW | CSCL |
---|---|
Focuses on communication techniques | Focuses on what is being communicated |
Used mainly in a business setting | Used mainly in an educational setting |
Purpose is to facilitate group communication and productivity | Purpose is to support students in learning together |
- Collaborative learning and the zone of proximal development
Collaborative learning can be understood as a kind of learning theory or as an instructional design model as it also is the case of constructivism.
Most Researchers in CSCL always have been interested in both aspects. Many CSCL researchers engage in fundamental research to understand collaborative settings affect learning while others build systems that scaffold certain interaction processes and associated cognitive activities. Frequently, there is a combination of the two, e.g. one may study how a system affects collaboration.
- Intelligent tutoring systems
Many of today's CSCL researchers worked in the early 1900's in field called artificial intelligence and education (AI&Ed) that engaged in endevours like building intelligent tutoring systems. Sometimes the focus of research moved from reasoning as the learner to reasoning with the learner and to build systems that support cognitive processes. These systems sometimes were called intelligent learning environments. Under the influence of socio-constructivist research, the next step, i.e.build and study systems that support cognitive processes in a collaborative setting wasn't too big.
Research topics
Stahl (2002:2) defines four themes important for thinking about CSCL
- Collaborative knowledge building
- Group and personal perspectives
- Mediation by artifacts
- Interaction analysis
Below are just 2 examples (many more are needed ....)
Argumentative knowledge construction
According to a Frank Fischer talk at EIAH 2007, argumentative knowledge construction is based on the following working hypothesis:
Construction of arguments leads to interesting cognitive processes (e.g. self-explanation) which in turn may improve construction of arguments. Cognitive processes triggered by this kind of collaborative exchange will improved individual's acquistion of knowledge (both knowledge on argumentation and the subject area).
However, "Two wrongs can not make right". Typically, one can observe erroneous, lacking or heteogeneous application of mental scripts. The working hypothesis of this kind of research is that a computer-supported "learning script" could enhance argumentation quality in discussion and individual knowledge on argumentation, then lead to deeper processing of learning material and finally to better learning.
In other terms collabortive scrips can extend zones of proximal development, e.g. help a student to formulate a right question which otherwise he could not have. Scripts should both change observable behavior and cognitive behavior. Collaboration scripts may lead to an alternative orchestration of argument in discourse, and consequently of cognitive processes.
Therefore central to this kind of CSCL research are collaboration scripts: Action programs that activate or assign roles and activities associated to these roles, that help individuals to understand and to act in specific collaborative situations (in part: Schank and Abelson, 1975).
See computer-supported argumentation for more discussion.
Learning scientific inquiry
Hakkarainen & Sintonen (2002) link CSCL research to a model of scientific inquiry:
- "Scardamalia and Bereiter (1994) have argued that there is a close relationship between the process of scientific thinking and learning science as well as between the philosophy of science and science education." (Hakkarainen 2002: 26)
- An analogy between the history of science and the development of scientific thinking in childhood as well as between scientific thinking and children's thinking has been a very important foundation of cognitive research on educational practices. (Hakkarainen 2002: 26)
- Knowledge-seeking inquiry entails that knowledge is not simply assimilated but constructed through solving problems of explanation and understanding. Through intensive collaboration and peer interaction, resources of the whole learning community may be used to facilitate advancement of inquiry. (Hakkarainen 2002: 27)
- It is generally believed that children are not capable of participating in these kinds of advanced scientific processes of inquiry, and, therefore, conventional pedagogical practices are not aimed at encouraging them. However, new computersupported learning environments emerging from cognitive research promise to facilitate participation in these higher- level processes of inquiry in education. (Hakkarainen 2002: 29)
Examples / Projects
- Distributed multimedia learning environments (Pea, 1993).
- Computer Supported Intentional Learning Environments (CSILE) and Knowledge forum Scardamalia & Bereiter, 1991, 1993, 1994).
Digital divide
When discussing CSCL and Educational technology in general, it is important to keep in mind the extreme disparity between different populations around the world when it comes to access to and capacity to receive benefits from computers and internet technologies resulting from various socio-economic and political factors. This disparity is referred to as the digital divide.
For more see:
- digitaldivide.org: a good overview of the issues involved and criticism of current private sector initiatives
- IBLF's Digital Partnership: a private sector initiative
Links
- The International Society of the Learning Sciences is probably the most imporant association with CSCL researchers. It sponsors the International Conferences on CSCL held bi-annually.
- International Journal of Computer-Supported Collaborative Learning. An Official Publication of the International Society of the Learning Sciences
- EuroCSL a site sponsored by the ITCOLE project
- CSCL: Computer-Supported Collaborative Learning by Lorraine Sherry.
- CSCL - a brief overview & interesting links for further study, a term paper project.
- CSCL General Resources for Novices by Nathan Zhao.
- CSCL Theories by Wana Daphne Lin Hsiao
- Computer-supported collaborative learning, The education encylopedia, Answers.com.
References
- Dillenbourg, P. (1999). Introduction: What do you mean by "collaborative learning"? In P. Dillenbourg (Ed.), Collaborative Learning: Cognitive and computational approaches (pp. 1-19) Amsterdam: Pergamon, Elsevier Science. http://tecfa.unige.ch/tecfa/publicat/dil-papers-2/Dil.7.1.14.pdf
- Dillenbourg, P., Baker, M., Blaye, A. & O'Malley, C.(1996) The evolution of research on collaborative learning. In E. Spada & P. Reiman (Eds) Learning in Humans and Machine: Towards an interdisciplinary learning science. (Pp. 189-211). Oxford: Elsevier. http://tecfa.unige.ch/tecfa/publicat/dil-papers-2/Dil.7.1.10.pdf
- Erkens, G., Jaspers, J., Prangsma, M., & Kanselaar, G. (2005). Coordination processes in computer supported collaborative writing. Computers in Human Behavior, 21(3), 463--486.
- Weinberger Armin; Douglas Clark , Gijsbert Erkens , Victor Sampson , Karsten Stegmann , Jeroen Janssen , Jos Jaspers , Gellof Kanselaar , Frank Fischer, Argumentative knowledge construction in CSCL, Proceedings of the 7th international conference on Learning sciences, p.1094-1100, June 27-July 01, 2006, Bloomington, Indiana. [
- Haake, J., Schwabe, G. & Wessner, N. (Ed.)(2004). CSCL-Kompendium. Lehr- und Handbuch zum computerunterstützen kooperativen Lernen. München: Oldenbourg.
- Hakkarainen, K. & Sintonen, M. (2002) The Interrogative Model of Inquiry and Computer-Supported Collaborative Learning, Science & Education 11: 25.
- Hinze-Hoare (2006), Vita, A Review of Papers that have a bearing on An Analysis of User Interactions in A Collaborative On-line Laboratory. School of Electronics and Computer Science
Southampton University, PDF
- Jonassen, D. H., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 693-719). New York: Macmillan.
- Lipponen, L. (2002), Exploring foundations for computer-supported collaborative learning, CSCL 2002, http://newmedia.colorado.edu/cscl/31.html
- Pea, Roy, D. Seeing What We Build Together: Distributed Multimedia Learning Environments for Transformative Communications, Journal of the Learning Sciences, 1993-1994, Vol. 3, No. 3, Pages 285-299, (doi:10.1207/s15327809jls0303_4)
- Roschelle, J. (1996). Learning by collaborating: Convergent conceptual change. In T. D. Koschmann (Ed.), CSCL: Theory and practice of an emerging paradigm (pp. 209--248). Mahwah NJ: Erlbaum.
- Scardamalia,M. & Bereiter, C. (1991), Higher Levels of Agency for Children in Knowledge Building: A Challenge for the Design of New Knowledge Media, Journal of the Learning Sciences 1991, Vol. 1, No. 1, Pages 37-68 (doi:10.1207/s15327809jls0101_3)
- Scardamalia,M. & Bereiter, C.: 1992, Text-Based and Knowledge-Based Questioning by Children, Cognition and Instruction 9, 177.
- Scardamalia, M. & Bereiter, C.: 1993, Technologies for Knowledge-Building Discourse, Communications of the ACM 36, 37.
- Scardamalia, M. & Bereiter, C.: 1994, Computer Support for Knowledge-building Communities, The Journal of the Learning Sciences 3, 265.
- Strijbos, Jan-Willem, Paul A. Kirschner , Rob L. Martens, What we know about CSCL: ...and what we do not (but need to) know about CSCL, in Strijbos, J.W., P.A. Kirschner, R.L. Martens and P.Dillenbourg, What we know about CSCL and implementing it in higher education, Kluwer Academic Publishers, Norwell, MA, 2004
- J. W. Strijbos , R. L. Martens , W. M. G. Jochems, Designing for interaction: six steps to designing computer-supported group-based learning, Computers & Education, v.42 n.4, p.403-424, 1 May 2004
- Stahl G. (2002) "Contributions to a theoretical framework for CSCL" in G. Stahl (Ed.), (2002) Computer support for collaborative learning: foundations for a CSCL community, (Cscl 2002 Proceedings), Mahwah, NJ: Lawrence Erlbaum Associates.
- Stahl, G. (2003). Building collaborative knowing: Elements of a social theory of learning. In J.-W. Strijbos, P. Kirschner & R. Martens (Eds.), What we know about CSCL in higher education. Amsterdam, NL: Kluwer.
- Van der Meijden, Henny; Robert Jan Simons and Frank de Jong, Final Report, Computer Supported Collaborative Learning Networks In Primary And Secondary Education, Project 2017, University Of Nijmegen, WORD (get the full report).
- To sort out
- Verburgh, An and Martin Mulder, PDF