Text mining
Cet article est une ébauche à compléter. Une ébauche est une entrée ayant un contenu (très) maigre et qui a donc besoin d'un auteur.
Voir aussi:
Notions de base
Préparation d'un corpus pour des analyses statistiques
Avant de pouvoir utiliser des méthodes quantitatives de fouille de textes, il faut préparer les documents. En règle générale, on passe à travers les étapes suivantes (pas forcément dans cet ordre précis):
Les étapes les plus populaires
Voici les étapes et filtres les plus importants. Selon le type d'analyse, on peut ignorer un étape pour des raisons pratiques (pas nécessaire) ou théoriques (on ne veut pas filtrer cette information) et on peut changer l'ordre.
Extraire le corps du document |
|
|
---|---|---|
Traduire en format texte brut (si nécessaire) |
|
|
Mettre tous les mots en minuscules | ||
Enlever Les ponctuations | ||
Enlever les nombres | ||
Enlever les blancs en trop | ||
Remplacer des caractères |
|
|
Remplacer des mots |
|
|
Enlever les "stop words" (mots communs à tous les textes, comme les articles) | ||
Racinisation (Angl.* Stemming) |
|
|
Lématisation (alternative plus difficile au stemming) |
|
|
Enlever d'autres mots |
|
La racinisation et la lemmatisation
Lire
- Racinisateur de Paice/Husk
- Lemmatisation et Racinisation en Français : Flexion, Lemme et Racine d’un mot par Benoît TROUVILLIEZ, 2010.
La racinisation (ou stemming) et la lemmatisation consistent à réduire une liste de mots à une liste plus courte qui ne contient qu'une variante du même mot. Le premier algorithme connu et toujours populaire est le Porter Stemming Algorithm (1979). Les librairies de R, utilisent l'implémentation Snowball qui a adapté l'algorithme Porter à d'autres langues, dont le français.
La racine correspond à la partie du mot qui reste, une fois qu'on a tué son préfixe et son suffixe. Contrairement à un lemme, il ne s'agit pas forcément d'un "vrai" mot.
Exemples:
- recherche, chercher, cherches, cherchions, cherchait -> cherch
Il existe un indice de compression IC:
- IC = (M - R) / M
- M = nombre de mots uniques avant racinisation
- R = nombre de racines uniques après racinisation
La lemmatisation cherche une forme canonique d'un mot. Le lemme est un mot de base, comme:
- un verbe à l'infinitif
- un adjectif, etc. au singulier masculin.
Exemples:
- cherches, cherchions -> chercher
- ai, as, a, eussions -> avoir
- belles, bel, beaux, beau -> beau
Fréquence et poids de termes
- La fréquence de termes (term frequency, tf)
- la fréquence d'un terme iest basée sur l'importance proportionnelle d'un terme dans un document.
- Donc pour un termei dans un documentj: la "term frequency" tfi,j = fonction de (ti, dj)
- Plus précisément, on peut calculer tfi,j = frequencei,j / maxe freqj.
- Autrement dit frequence de termei = nombre d’occurrences du terme ti dans le documentj / nombre d’occurrences du terme le plus fréquent dans le document dj
- La fréquence inverse (Inverse of document frequency, idf)
- Mesure la discrimination d'un terme dans le corpus
- Un terme qui apparaît souvent dans le corpus est moins important (pour la discrimination) qu'un terme moins fréquent (TP, Approche basée sur tf*idf
- idfi = log 10 (N / dfi)
- N = nombre de documents dans le corpus
- dfi = nombre de documents contnant le terme ti
- Le poids d'un terme
- Est la combinaison de term frequency et inverse of document frequency, autrement dit: la fréquence du terme dans un document pondéré par la fréquence du terme dans le corpus.
- fi,j = tfi,j X idfj
Les Matrices termes-documents
Les matrices termes-documents et documents termes résument les mots que l'on retrouve dans divers document d'un corpus.
- Matrices documents-termes (Angl.
- Document Term Matrix, DTM)
- Chaque ligne d'une matrice DT représente un document, chaque colonne un terme (mot)
Alpha Beta Creux
doc1 2 1 ....
doc2 1
doc3 2
- Matrice termes-documents (Angl.
- Term Document Matrix, TDM)
- Chaque ligne d'une matrice TD représente un terme (mot), chaque colonne un document
doc1 doc2 doc3
Alpha 2 1 2
Beta 1 0 3
Creux 0 1 0
A partir de ce type de matrice on peut effectuer plusieurs analyses.
Le part-of-speech tagging
Selon ([http://fr.wikipedia.org/wiki/%C3%89tiquetage_morpho-syntaxique Wikipédia, oct 20, 2014), nn linguistique, l'étiquetage morpho-syntaxique (aussi appelé étiquetage grammatical, POS tagging (part-of-speech tagging) en anglais) est le processus qui consiste à associer aux mots d'un texte les informations grammaticales correspondantes comme la partie du discours, le genre, le nombre, etc. à l'aide d'un outil informatique.
Certains types d'analyses du text mining utilisent des techniques de la linguistique. Ils utilisent comme input non pas une liste de mots ou de termes, mais un texte annoté. Ces annotations comprennent:
- Informations "part-of-speech", c'est à dire la position d'un élément dans une phrase selon une convention linguistique.
- Informations "lemma
Un outil populaire multi-langues et gratuit est le TreeTagger.
Similarité
Approche classique
L'approche classique simple définit deux documents comme similaires si les deux partagent des termes. Dans modèle, inventé par Salton (1971) (selon Clément Grimal et Gilles Bisson):
- Deux documents sont similaires s'ils contiennent des termes similaires
- Deux termes sont similaires s'ils apparaissent dans des documents similaires
On utilise le poids des termes organisés dans les matrices documents-termes.
Cette méthode souffre du fait que les gens n'utilisent pas toujours les mêmes mots pour parler de la même chose. Ce problème est accentué lorsqu'on a des petites textes.
Exemple:
- Cette application est facile à utiliser.
- Ce logiciel est facile à utiliser.
On constate:
- Une relation de premier ordre entre application, facile et utiliser (ou entre logiciel, facile, utiliser)
- Une relation de 2ème ordre (détectable facilement par les humains) entre "application" et "logiciel". Détecter ce type de relation est nettement plus difficile et peut se faire avec des algorithmes comme LSA, X-SIM, et CTK.
Survol d'autres approches
Grimal et Bisson distinguent entre 5 mesures de similarité:
- Le cosinus
- X-Sim (avec ou sans k et p) [Hussain et al.(2010)]
- LSA (Latent Semantic Analysis) [Deerwester et al.(1990)]
- SNOS (Similarity in Non-Orthogonal Space) [Liu et al.(2004)]
- CTK (Commute Time Kernel) [Yen et al.(2009)
+Classification Ascendante Hiérarchique, avec l'indice de Ward
Le modèle LSI
Voir aussi Latent semantic analysis and indexing
Ce modèle part de l'idée que deux termes différents qui apparaissent dans des documents qui sont similaires (ont beaucoup de termes en commun) sont également similaires. Dans l'exemple ci-dessus, application est similaire à logiciel car les deux ont une co-occurence avec facile et utiliser.
Ce modèle était développé pour des corpus larges (par exemple des engins de recherche).
L'utilisation de LSI comprend plusieurs étapes:
- On commence par une matrice documents-termes (DTM)
- ... (à suivre)
Liens en Anglais
(à bouger un jour ...)
General
(websites, blogs, etc.)
- Quantifying memory. Includes tutorials for course about web scraping through R:
- Blog Onyme. Blog d'une société qui vend des solutions. Contient des articles d'intérêt général.
Machine learning
- Webcast: How to Develop Language Annotations for Machine Learning Algorithms
- MATTER Annotation Development Process: Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. ** James Pustejovsky, Amber Stubbs (2012). Natural Language Annotation for Machine Learning A Guide to Corpus-Building for Applications, O'Reilly, http://shop.oreilly.com/product/0636920020578.do
Topic modeling
- David Blaye's home page Includes an introduction to topic modelling.
Summarization of microblogs
Bibliographie
- Gilles Bisson et Clément Grimal, Apprentissage multi-vue de co-similarités pour la classification, CAp, 2012. Paper, Slides
- Clément Grimal et Gilles Bisson, Amélioration de la co-similarité pour la classification de documents, CAP 2011, Paper, Slides
- S. F. Hussain, C. Grimal, and G. Bisson. An improved co-similarity measure for document clustering. In Proceedings of the 9th ICMLA, 2010.
- S. Deerwester, S. T. Dumais, G. W. Furnas, Thomas, and R. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41:391-407, 1990.
- N. Liu, B. Zhang, J. Yan, Q. Yang, S. Yan, Z. Chen, F. Bai, and W. ying Ma. Learning similarity measures in non-orthogonal space. In Proceedings of the 13th ACM CIKM, pages 334-341. ACM Press, 2004.
- L. Yen, F. Fouss, C. Decaestecker, P. Francq, and M. Saerens. Graph nodes clustering with the sigmoid commute-time kernel: A comparative study. Data Knowl. Eng., 68(3):338-361, 2009