Utiliser R dans l'enseignement et la formation

De EduTech Wiki
Aller à la navigation Aller à la recherche

Cet article est en construction: un auteur est en train de le modifier.

En principe, le ou les auteurs en question devraient bientôt présenter une meilleure version.



Introduction

Cet article vise à promouvoir l'utilisation de R dans l'enseignement et la formation. Nous illustrerons les avantages d'adopter une solution open source basée sur du code, mais également des réflexions sur comment limiter les désavantages d'une approche qui peut être moins intuitive, au moins au départ, par rapport à des solutions pointer-cliquer comme SPSS ou Jamovi. La page propose également une collection de ressources, théoriques et pratiques, qui peuvent être utiles à des formateurs qui décident d'intégrer R dans leurs cours/formations.

Un autre article disponible dans ce wiki aborde l'utilisation de R dans la recherche :

Les deux pages sont liés à Pensée computationnelle avec R, une collection de ressources pour apprendre R dans le contexte des sciences sociales (voir également Pensée computationnelle en sciences sociales).

Note sur la référence à R

Pour brévité, nous allons faire référence simplement à R dans l'article, mais en réalité nous nous référons à l'ensemble d'un environnement de travail typique qui inclut d'autres éléments, comme par exemple RStudio. Pour plus d'informations sur l'environnement typique, voir :

Avantages liés aux logiciels

Nous proposons d'abord des avantages très pratiques, liés au choix des logiciels qui font partie de l'écosystème de R, notamment en relation avec le fait que ces logiciels sont :

  • Gratuits
  • Open source
  • Multi-plateforme

Gratuits

Le premier avantage concerne la disponibilité des logiciels : l'environnement de travail typique se compose d'éléments qui sont gratuits. Ceci représente un avantage à la fois pour les institutions et les étudiant-es.

  • Pour les institutions
    Les institutions ne doivent pas payer de licences et peuvent donc épargner de l'argent. De plus, elles ne doivent pas vigiler à ce que les licences dont elles disposent ne soient pas partagées ou maintenues de manière illicite.
  • Pour les étudiant-es
    Les étudiant-es peuvent continuer à utiliser les mêmes logiciels qu'ils ont utilisés lors de la formation même une fois qu'ils ne font plus partie de l'institution. De plus, ils peuvent continuer à exploiter le matériel pédagogique ainsi que des éventuels exercices ou projets menés dans le cadre de la formation, ce qui ne serait pas possible avec un logiciel nécessitant d'une licence. D'ailleurs, l'absence d'un prix pour la licence peut encourager les étudiant-es à proposer des pratiques basées sur l'utilisation de R dans des entreprises, institutions ou organisations qu'ils rejoignent après la formation.

Open source

Les logiciels de l'environnement de travail typique sont également open source, ce qui comporte l'avantage de pouvoir le scruter et connaître le fonctionnement interne. Cet aspect est particulièrement important si on veut garder une cohérence, par exemple, avec des enseignements préconisant l'importance de la transparence des méthodes utilisés dans la science.

De plus, les étudiant-es peuvent également contribuer directement à des projets qui sont construits autour de l'écosystème de R, comme par exemple des paquets ou de la documentation.

Multi-plateforme

L'écosystème de R peut être installé ou utilisé indépendamment du système d'exploitation adopté par les étudiant-es : il est disponible pour Windows, Mac et Linux. Ce principe s'applique également au matériel pédagogique qui, sauf pour des instructions relatives à l'installation, ne doit pas tenir compte des particularités des différents systèmes.

Encore une fois, cet aspect permet aux étudiant-es de continuer à utiliser le même environnement de travail après la formation, tout en maintenant leur système d'exploitation préféré.

Avantages liés à l'utilisation du code

Même si écrire du code est une activité difficile à apprendre et à maintenir dans le temps, surtout dans le cas d'utilisation sporadique, elle présente néanmoins certains avantages d'un point de vue pédagogique. Nous présenterons ici seulement les avantages et aborderons les problématiques dans une section plus bas dans la page.

Liste provisoire :

  • Simulations
  • Lecture/Explication progressive (vs formules mathématiques)
  • Permanence des éléments (vs fenêtres modales dans un logiciel)
  • Décomposition
  • Utilisation des commentaires (e.g. méta-codage)
  • Partage du code à la fin de la session
  • Plus simple de mettre à jour

Avantages pour le matériel et les activités pédagogiques

Une conséquence directe de l'utilisation du code concerne le matériel pédagogique mis à disposition des apprenants, ainsi que les activités qu'on peut effectuer pendant le cours ou dans des travaux/projets.

Matériel pédagogique

Au niveau du matériel pédagogique, on peut exploiter la nature textuelle du code de deux manières :

  1. Intégrer le code avec des explications dans de documents statiques
  2. Intégrer le code dans des documents interactifs ou il est à la fois affiché et exécuté pour montrer le résultat

L'écosystème de R met directement à disposition des paquets utile aux deux fonctions, ce qui permet donc d'exploiter R également comme outil pour la création de matériel pédagogique.

Activités pédagogiques pendant les cours

Travaux/projets à rendre

Désavantages et solutions pour les atténuer

Ressources

Sélection de ressources utiles pour utiliser R dans l'enseignement et la formation.

Paquets

  • learnr : création de tutoriels interactifs à partir de documents Rmarkdown. Depuis la version de RStudio 1.3, relâchée en mai 2020, le tutoriel learnr peuvent être suivi directement à l'intérieur de l'interface du logiciel.
  • webex : création de tutoriels interactifs, moins riches par rapport à learnr, mais plus simple à déployer (e.g. simples pages HTML).
  • swirl : création de séquences pédagogiques interactives disponibles directement à l'intérieur de la console de R.
  • Flippbookr : affichage progressif des bouts de code en R pour montrer les changements étape par étape

Liens