Analyses statistiques avec R

De EduTech Wiki
Aller à la navigation Aller à la recherche

Introduction

R est un langage de programmation et un environnement open-source permettant le traitement des données et les analyses statistiques. Sur cette page nous proposons un tutoriel permettant de s’initier à cet environnement. Dans un premier moment, nous présenterons les bases du fonctionnement de R. Par la suite, nous introduirons le traitement des données alphanumériques (analyse qualitative). Dans un troisième moment nous introduirons le traitement des données numériques (analyse quantitative). Enfin, nous présenterons les structures de contrôle.

Pourquoi préférer R à d'autres logiciels de traitement de données ?

  • Il s’agit d’un logiciel gratuit à code source ouvert
  • Il est compatible avec les systèmes Windows, MAC OS et Linux
  • Il s’agit d’un logiciel très puissant et complet
  • Il est en essor permanent
  • En cas de problème, des milliers d'utilisateurs sont prêts à vous aider !

Fondements de R

Installation de R

Introduction à l'environnement R

Help de R

Commentaires

Les objets de R

Les vecteurs

Les matrices

Les data frames

Charger des jeux des données de R

Importer des bases des données

Traitement des données alphanumériques

Traitement des données numériques

Programmation et structures de contrôle

Bibliographie

  • Chevalier, B. (2005). Logiciels libres Open source : qu'est-ce que c'est ? Paris : H & K.
  • Cornillon, P.A. (2010). Statistiques avec R (2ème édition augmentée). Rennes : Presses Universitaires de Rennes.
  • Fox, J. The R Commander: A Basic-Statistics Graphical User Interface to R. http://www.jstatsoft.org/v14/i09/paper
  • Howell, D. (1998). Méthodes statistiques en sciences humaines. Bruxelles : Editions De Boeck Université.
  • Jean, B. (2011). Du bon usage des licences libres. Framasoft (coll. Framabook).
  • Millot, G. (2008). Comprendre et réaliser les tests statistiques à l’aide de R (1ère édition). Bruxelles : Editions De Boeck Université.
  • Smets-Solanes, J.P. (1999). Logiciels libres : liberté, égalité, business. Paris : Edispher.