« Echantillonnage en méthodes quantitatives » : différence entre les versions
Ligne 28 : | Ligne 28 : | ||
La signification statistique des résultats dépend à la fois de la force des corrélations et de la taille des échantillons. Par conséquent, plus vous aurez étudié un nombre important de cas, plus vos résultats auront de chances d'être interprétables! Illustrons ce principe avec un exemple: | La signification statistique des résultats dépend à la fois de la force des corrélations et de la taille des échantillons. Par conséquent, plus vous aurez étudié un nombre important de cas, plus vos résultats auront de chances d'être interprétables! Illustrons ce principe avec un exemple: | ||
[[File:regression-1. | [[File:regression-1.jpg|Corrélation entre la formation des enseignants et la moyenne des notes des étudiants]] | ||
Considérons que vous avez au départ des données concernant seulement 6 enseignants (les points rouges): vos données suggèrent une corrélation négative (un nombre plus important de jours de formation entraîne de moins bonnes moyennes). Observons maintenant ce qui se passe si nous ajoutons seulement deux nouveaux professeurs (les 2 points verts). La relation observée passera de négative à positive, i.e. les données suggèrent une corrélation (faiblement) positive. | Considérons que vous avez au départ des données concernant seulement 6 enseignants (les points rouges): vos données suggèrent une corrélation négative (un nombre plus important de jours de formation entraîne de moins bonnes moyennes). Observons maintenant ce qui se passe si nous ajoutons seulement deux nouveaux professeurs (les 2 points verts). La relation observée passera de négative à positive, i.e. les données suggèrent une corrélation (faiblement) positive. |
Version du 26 août 2015 à 11:40
Manuel de recherche en technologie éducative | |
---|---|
Module: Recueil de données quantitatives | |
◀▬▬▶ | |
⚐ brouillon | ☸ intermédiaire |
⚒ 2015/08/26 |
Les règles de base pour l'échantillionage
Le nombre de cas que vous devez prendre en considération est plutôt un nombre absolu qu'un pourcentage.
- La taille de l'échantillon n'est ainsi pas dépendante de la taille de la "population" totale, à moins que vous ne prévoyiez d'étudier des sous-populations.
La meilleure stratégie d'échantillonnage est la sélection aléatoire d'individus, car:
- Il est probable que vous trouviez des représentants de chaque "sorte" dans votre échantillon.
- Vous évitez ainsi l'auto-sélection (i.e. que seules les personnes "intéressées" répondent à votre sondage ou participent à des expériences).
Lorsque vous travaillez avec de petits échantillons, vous pouvez utiliser un système de quotas:
- E.g. assurez-vous que vous avez à la fois des "experts" et des "novices" dans une étude d'utilisabilité d'un logiciel donné.
- E.g., assurez-vous de (a) mener des entretiens à la fois avec des enseignants qui sont des utilisateurs enthousiastes et d'autres qui ne le sont pas, (b) de vous pencher sur des écoles qui sont bien équipées tout autant que sur d'autres qui ne le sont pas dans une étude sur l'utilisation des nouvelles technologies.
Un premier aperçu de la signification statistique
La signification statistique des résultats dépend à la fois de la force des corrélations et de la taille des échantillons. Par conséquent, plus vous aurez étudié un nombre important de cas, plus vos résultats auront de chances d'être interprétables! Illustrons ce principe avec un exemple:
Considérons que vous avez au départ des données concernant seulement 6 enseignants (les points rouges): vos données suggèrent une corrélation négative (un nombre plus important de jours de formation entraîne de moins bonnes moyennes). Observons maintenant ce qui se passe si nous ajoutons seulement deux nouveaux professeurs (les 2 points verts). La relation observée passera de négative à positive, i.e. les données suggèrent une corrélation (faiblement) positive.
Cet effet d'inversion montre que mener une analyse statistique en se basant sur des ensembles de données très petits équivaut à jouer à un jeu de hasard. Si votre ensemble de données avait compris 20 enseignants ou plus, ajouter ces 2 individus en vert n'aurait pas changé la relation. C'est pourquoi la recherche expérimentale (onéreuse) tente habituellement d'avoir au moins 20 sujets dans un groupe.
L'échantillonnage type pour les expériences
Echantillonner pour l'expérimentation est un art plus simple. Vous devriez avoir:
- De préférence 20 sujets par condition expérimentale
- Au moins 12 sujets par condition expérimentale (mais attendez-vous à obtenir quelques relations non significatives)
Exemple: Un modèle comprend trois variables:
- Variable explicative (indépendante) X: Diagramme statique vs. animation vs. animation interactive
- Variable dépendante (à expliquer) Y1: Mémoire à court terme
- Variable dépendante (à expliquer) Y2: Mémoire à long terme
Les variables dépendantes (Y1 et Y2) peuvent être toutes les deux mesurées par des tests de mémorisation.
Pour la variable X, nous avons trois conditions. Par conséquent, nous avons besoin de 3 * 20 = 60 sujets. Si vous vous attendez à des relations très fortes, vous pouvez vous en tirer avec 3 * 12.
Remarque: nous ne pouvons administrer les trois conditions différentes à chaque individu (car en passant d'une expérience à une autre, ils apprendront). Vous pouvez néanmoins envisager de concevoir 3 * 3 = 9 sortes différentes de matériels expérimentaux et faire faire à chaque individu chaque expérience dans une condition différente. Cependant, ils pourraient ressentir une certaine lassitude ou montrer d'autres effets de l'expérimentation… En outre, produire un bon matériel expérimental est plus onéreux que de trouver des sujets.
Echantillons types pour les enquêtes par sondage
Essayez d'obtenir le plus de participants possible si vous utilisez des sondages écrits ou en ligne. Traiter des données en ligne a un faible coût, mais vous aurez certainement un biais d'échantillonnage.
Le minimum est de 40 participants, 100 est un bon chiffre et 200 une quantité excellente pour un mémoire de master. Pour un travail de thèse de doctorat, un échantillon de 200 participants, au minimum, est requis pour une enquête par sondage. Autrement, vous ne pourrez mener aucune analyse de données intéressante, car vos seuils de signification seront trop élevés (i.e. mauvais) lorsque vous analyserez des relations, même modérément complexes.
Echantillons types pour les données agrégées
Vous pouvez trouver des statistiques agrégées officielles sur les écoles, les régions, les pays, etc. Etant donné que ces données reflètent des "réalités" réelles, vous pouvez travailler avec des échantillons plus petits (cependant, consultez un expert, tout dépend des sortes d'analyses que vous prévoyez de mener).