« Importer des données dans R » : différence entre les versions

De EduTech Wiki
Aller à la navigation Aller à la recherche
mAucun résumé des modifications
 
(10 versions intermédiaires par 4 utilisateurs non affichées)
Ligne 1 : Ligne 1 :
{{tutoriel
{{tutoriel
|fait_partie_du_cours=Tutoriels R
|fait_partie_du_cours=Analytique et exploration de données
|fait_partie_du_module=Tutoriels R
|pas_afficher_sous-page=Non
|page_precedente=Les données R
|page_precedente=Les données R
|page_suivante=Traitement de données alphanumériques avec R
|page_suivante=Traitement de données alphanumériques avec R
|statut=brouillon
|statut=brouillon
|dernière_modif=2014/11/25
|dernière_modif=2014/11/25
|voir_aussi=Les données R,  Web scraping‎, Traitement de données alphanumériques avec R
|difficulté=intermédiaire
|difficulté=intermédiaire
|voir_aussi=Les données R,  Web scraping‎, Traitement de données alphanumériques avec R, Importer des données avec Tidyverse
|all_pages_module=Non
|cat tutoriels=R
}}
}}
== Introduction ==
== Introduction ==


Il existe une multitude de possibilité pour importer des données R et ensuite les gérer.
Il existe une multitude de possibilités pour importer des données R et ensuite les gérer.


* R possède des fonctionnalités de base pour lire des fichiers en entier ou encore des fichiers structurés
* R possède des fonctionnalités de base pour lire des fichiers en entier ou encore des fichiers structurés.
* Plusieurs extensions ajoutent des méthodes spécifiques pour lire et éventuellement déjà traiter des données. Parfois les résultats seront stockés dans des structures de données non-standardes (listes).
* Plusieurs extensions ajoutent des méthodes spécifiques pour lire et éventuellement déjà traiter des données. Parfois, les résultats seront stockés dans des structures de données non standard (listes).


== Lecture de données tabulaires ==
== Lecture de données tabulaires ==


Les fonctions '''''read.table()''''' et '''''read.csv()''''' permettent de lire et importer  des fichiers ''.txt'' et ''.csv''. Le résultat va se trouver dans une structure de type "data frame".
Les fonctions <code>read.table()</code>, <code>read.csv()</code> et <code>read.csv()</code> permettent de lire et importer  des fichiers ''.txt'' et ''.csv''. Le résultat va se trouver dans une structure de type "data frame".
 
Ces trois fonctions sont identiques, mais possèdent d'autres défauts. La syntaxe de <code>read.table()</code> est assez riche est compliquée. Ci-dessous, on indique juste quelques exemples.


R peut directement lire un fichier depuis un URL.
R peut directement lire un fichier depuis un URL.


L'intégration de la fonction <code>file.choose()</code> permet à l'utilisateur de sélectionner un fichier.
On peut indiquer la source avec la fonction <code>file.choose()</code>. Cela permet à l'utilisateur de sélectionner un fichier.


<source lang="matlab" enclose="div">
<source lang="matlab" enclose="div">
# Le fichier data.txt est lu est stocké dans un nouveau objet R nommé Database
# Le fichier data.txt est lu et stocké dans un nouvel objet R nommé Database
Database <- read.table("data.txt", header = TRUE)
Database <- read.table("data.txt", header = TRUE)


Ligne 30 : Ligne 36 :
Database <- read.table(file.choose(), header = TRUE, sep = ",")
Database <- read.table(file.choose(), header = TRUE, sep = ",")


# Fichier de type CSV. Le séparateur utilisé dans le fichier csv est le point-virgule
# Fichier de type CSV. Le séparateur utilisé dans le fichier CSV est le point-virgule. On force un encodage UTF-8
Database <- read.csv(file.choose(), header = TRUE, sep= ";")
Database <- read.csv(file.choose(), header = TRUE, sep= ";", encoding="UTF-8")


# Fichier de type CSV depuis un serveur web (ce fichier contient des stats de google webmaster tools pour edutechwiki ...)
# Fichier de type CSV depuis un serveur web (ce fichier contient des stats de Google Webmaster Tools pour EduTechWiki...)


Database <- read.csv("http://tecfa.unige.ch/guides/R/data/edutechwiki-fr-gw-oct-6-2014.csv", header = TRUE, sep= ",")
Database_webmaster <- read.csv("http://tecfa.unige.ch/guides/R/data/edutechwiki-fr-gw-oct-6-2014.csv", header = TRUE, sep= ",")


# Fichier de type Excel qui contient une simple matrice, la première ligne contient les noms de variables
# Fichier de type Excel qui contient une simple matrice, la première ligne contient les noms de variables
Ligne 42 : Ligne 48 :
</source>
</source>


Visualiser les tableaux:
Visualiser les tableaux :
* Dans RStudio, cliquer sur le variable (par ex. "Database" ci-dessus) dans le panneau Environment
 
* Sinon, utilisez: summary(DB), dim(Database), etc.
* Dans RStudio, cliquer sur la variable (par ex. "Database" ci-dessus) dans le panneau "Environment"
 
* Sinon, utilisez : summary(DB), dim(Database), etc.
 
* Pour afficher une colonne ou d'autres détails, utilisez la syntaxe "$" ou "[..]" expliquée dans l'article [[Les données R]]
 
<source lang="matlab">
summary(Database_webmaster)
                      Query      Impressions          Change        Clicks            Change.1 
10 minutes à perdre wiki:  1  Min.  :  1.00  ∞      :2089  Min.  :  0.0000  ∞      :4009 
123d                    :  1  1st Qu.:  1.00          : 444  1st Qu.:  0.0000  -100%  : 192 
12 3d                  :  1  Median :  2.00  100%  : 191  Median :  0.0000          :  80 
123d autodesk          :  1  Mean  :  14.35  -50%  : 180  Mean  :  0.5511  100%  :  46 
123d autodesk tutorial  :  1  3rd Qu.:  6.00  200%  :  86  3rd Qu.:  0.0000  -50%  :  26 
123d beta              :  1  Max.  :7500.00  50%    :  74  Max.  :188.0000  200%  :  17 
(Other)                :4483                    (Other):1425                      (Other): 119 
      CTR          Change.2      Avg..position      Change.3     
0%    :3817  Min.  :-100.0  Min.  :  1.00  Min.  :-200.00 
100%  :  82  1st Qu.:  -6.0  1st Qu.:  6.50  1st Qu.:  -1.00 
3%    :  51  Median :  4.0  Median :  9.20  Median :  0.40 
50%    :  44  Mean  :  9.9  Mean  : 20.49  Mean  :  1.06 
4%    :  33  3rd Qu.:  20.0  3rd Qu.: 21.00  3rd Qu.:  2.00 
25%    :  32  Max.  : 100.0  Max.  :500.00  Max.  : 300.00 
(Other): 430  NA's  :3643                      NA's  :2347   
>
 
> Database_webmaster$Query[1:10]
[1] socioconstructivisme          constructivisme              socio constructivisme       
[4] scénario pédagogique          behaviorisme                  théorie de l'action raisonnée
[7] xslt tutorial                curriculum définition        bpmn                       
[10] xslt                       
4489 Levels: 10 minutes à perdre wiki 123d 12 3d 123d autodesk 123d autodesk tutorial ... вебмастер тулс
> Database_webmaster[1,]
                Query Impressions Change Clicks Change.1 CTR Change.2 Avg..position Change.3
1 socioconstructivisme        603  109%    188    109% 31%      NA          1.3      NA
</source>
 
Et voici un piechart moche pour un peu égayer la lecture....
<source lang="matlab">
pie(Database_webmaster$Impressions[1:20],
    main="EduTechWiki Web Search Piechart", col=rainbow(20),
    labels=Database_webmaster$Query[1:20])
</source>
 
[[Fichier:Piechart-moche.png|500px|vignette|none|Exemple d'un gateau raté ...]]
 
== Lire un simple fichier texte ==
 
Attention : Il est important de savoir utiliser les fonctions de base de R. Par contre, il faut aussi se renseigner sur les outils de lecture de sources qui sont disponibles dans les paquets spécialisés comme '''''[[Tutoriel tm text mining package|tm]]'''''.
 
=== Avec readLines ===
 
<code>readLines</code> est une méthode classique pour lire des fichiers texte. Il s'agit d'une méthode sûre, mais plutôt à déconseiller au profit de fonctions de plus haut niveau ...
 
Exemples simples :
mon_fichier <- readLines ("fichier.txt")
mon_fichier2 <- readLines ("http://tecfa.unige.ch/welcome.html.en")
 
Voici un script plus complet :
<source lang="XML">
> setwd ("C:/dks/methodo/R/")
> getwd()
[1] "C:/dks/methodo/R"
> mon_text <- readLines ("./wiki_pospap_text/Assessments.txt")
> length(mon_text)
[1] 58
</source>
 
Le résultat est un vecteur qui contient autant d'éléments qu'il y a de lignes dans le fichier. Ce type de lecture est utile si la ligne représente quelque chose (un paragraphe par exemple).
 
Sinon, cette fonction <code> readLines()</code> permet aussi d'indiquer un encodage, et finalement il est possible de mettre un texte entier dans un seul élément avec la fonction <code>stri_flatten</code> (voir ci-dessous).
 
=== La fonction scan ===
 
La fonction <code>scan()</code> est assez flexible pour lire plusieurs types de données. Pour lire du texte, on utilisera au moins les deux paramètres <code>file=...</code> et <code>what="character"</code>. Dans l'exemple suivant, on voit qu'on lit 1517 tokens (mots, nombres, caractères de ponctuation...). Par défaut, un élément (token) est séparé par un " ", mais on peut également définir d'autres caractères.
 
<source lang="matlab">
> mon_text <- scan (file="./wiki_pospap_text/Assessments.txt", what="character")
Read 1517 items
> mon_text
  [1] "contents"                "1"                      "supporting"              "assessment"           
  [5] "using"                  "icts"                    "2"                      "problem"               
  [9] "3"                      "role"                    "of"                      "icts" 
</source>
 
== Lecture de fichiers texte dans une série de strings ==
 
'''Utilisation de fonctions R de base pour lire dans des vecteurs'''
: Cette méthode "readline" marchera avec n'importe quelle page HTML.
 
<source lang="matlab">
library(tm)
library(stringi)
library(proxy)
# le nom du wiki
wiki <- "http://edutechwiki.unige.ch/fr/"
# une liste de noms de pages
titles <- c("STIC:STIC_I_-_exercice_1_(Utopia)", "STIC:STIC I - exercice 1 (Nestor-Pixel)",
            "STIC:STIC_I_-_exercice_2_(Utopia)",
            "STIC:STIC III (2012)/Module 1",  "STIC:STIC III (2012)/Module 2")
 
# un vecteur qui contient 5 strings vides ("")
articles <- character(length(titles))
 
# lecture des contenus des pages wiki. Chaque article se trouvera dans un des strings ci-dessous.
for (i in 1:length(titles)) {
    articles[i] <- stri_flatten(readLines(stri_paste(wiki, titles[i])), col = "")
}
 
# Création d'un corpus tm avec les article
docs <- Corpus(VectorSource(articles))
</source>
 
== Importer des données avec Tidyverse ==
 
Il est également possible d'utiliser l'[[Introduction à Tidyverse|écosystème Tidyverse]], une collection de paquets pour effectuer les opérations les plus fréquentes sur des données, pour importer différents types de données. Voir :
 
{{ Goblock | [[Importer et exporter des données avec Tidyverse]] }}
 
== Conclusion ==
 
Cette page a proposé un survol de différentes techniques pour importer des données en [[R]].

Dernière version du 7 décembre 2022 à 11:46

Analytique et exploration de données
Module: Tutoriels R
◀▬▬▶
brouillon intermédiaire
2022/12/07 ⚒⚒ 2014/11/25
Voir aussi
Catégorie: R

Introduction

Il existe une multitude de possibilités pour importer des données R et ensuite les gérer.

  • R possède des fonctionnalités de base pour lire des fichiers en entier ou encore des fichiers structurés.
  • Plusieurs extensions ajoutent des méthodes spécifiques pour lire et éventuellement déjà traiter des données. Parfois, les résultats seront stockés dans des structures de données non standard (listes).

Lecture de données tabulaires

Les fonctions read.table(), read.csv() et read.csv() permettent de lire et importer des fichiers .txt et .csv. Le résultat va se trouver dans une structure de type "data frame".

Ces trois fonctions sont identiques, mais possèdent d'autres défauts. La syntaxe de read.table() est assez riche est compliquée. Ci-dessous, on indique juste quelques exemples.

R peut directement lire un fichier depuis un URL.

On peut indiquer la source avec la fonction file.choose(). Cela permet à l'utilisateur de sélectionner un fichier.

# Le fichier data.txt est lu et stocké dans un nouvel objet R nommé Database
Database <- read.table("data.txt", header = TRUE)

# Le séparateur utilisé dans le fichier délimité est la virgule
Database <- read.table(file.choose(), header = TRUE, sep = ",")

# Fichier de type CSV. Le séparateur utilisé dans le fichier CSV est le point-virgule. On force un encodage UTF-8
Database <- read.csv(file.choose(), header = TRUE, sep= ";", encoding="UTF-8")

# Fichier de type CSV depuis un serveur web (ce fichier contient des stats de Google Webmaster Tools pour EduTechWiki...)

Database_webmaster <- read.csv("http://tecfa.unige.ch/guides/R/data/edutechwiki-fr-gw-oct-6-2014.csv", header = TRUE, sep= ",")

# Fichier de type Excel qui contient une simple matrice, la première ligne contient les noms de variables
library(xlsx)
Database <- read.xlsx("c:/dks/myexcel.xlsx", 1)

Visualiser les tableaux :

  • Dans RStudio, cliquer sur la variable (par ex. "Database" ci-dessus) dans le panneau "Environment"
  • Sinon, utilisez : summary(DB), dim(Database), etc.
  • Pour afficher une colonne ou d'autres détails, utilisez la syntaxe "$" ou "[..]" expliquée dans l'article Les données R
summary(Database_webmaster)
                      Query       Impressions          Change         Clicks            Change.1   
 10 minutes à perdre wiki:   1   Min.   :   1.00         :2089   Min.   :  0.0000         :4009  
 123d                    :   1   1st Qu.:   1.00          : 444   1st Qu.:  0.0000   -100%  : 192  
 12 3d                   :   1   Median :   2.00   100%   : 191   Median :  0.0000          :  80  
 123d autodesk           :   1   Mean   :  14.35   -50%   : 180   Mean   :  0.5511   100%   :  46  
 123d autodesk tutorial  :   1   3rd Qu.:   6.00   200%   :  86   3rd Qu.:  0.0000   -50%   :  26  
 123d beta               :   1   Max.   :7500.00   50%    :  74   Max.   :188.0000   200%   :  17  
 (Other)                 :4483                     (Other):1425                      (Other): 119  
      CTR          Change.2      Avg..position       Change.3      
 0%     :3817   Min.   :-100.0   Min.   :  1.00   Min.   :-200.00  
 100%   :  82   1st Qu.:  -6.0   1st Qu.:  6.50   1st Qu.:  -1.00  
 3%     :  51   Median :   4.0   Median :  9.20   Median :   0.40  
 50%    :  44   Mean   :   9.9   Mean   : 20.49   Mean   :   1.06  
 4%     :  33   3rd Qu.:  20.0   3rd Qu.: 21.00   3rd Qu.:   2.00  
 25%    :  32   Max.   : 100.0   Max.   :500.00   Max.   : 300.00  
 (Other): 430   NA's   :3643                      NA's   :2347     
> 

> Database_webmaster$Query[1:10]
 [1] socioconstructivisme          constructivisme               socio constructivisme        
 [4] scénario pédagogique          behaviorisme                  théorie de l'action raisonnée
 [7] xslt tutorial                 curriculum définition         bpmn                         
[10] xslt                         
4489 Levels: 10 minutes à perdre wiki 123d 12 3d 123d autodesk 123d autodesk tutorial ... вебмастер тулс
> Database_webmaster[1,]
                 Query Impressions Change Clicks Change.1 CTR Change.2 Avg..position Change.3
1 socioconstructivisme         603   109%    188     109% 31%       NA           1.3       NA

Et voici un piechart moche pour un peu égayer la lecture....

pie(Database_webmaster$Impressions[1:20], 
    main="EduTechWiki Web Search Piechart", col=rainbow(20),
    labels=Database_webmaster$Query[1:20])
Exemple d'un gateau raté ...

Lire un simple fichier texte

Attention : Il est important de savoir utiliser les fonctions de base de R. Par contre, il faut aussi se renseigner sur les outils de lecture de sources qui sont disponibles dans les paquets spécialisés comme tm.

Avec readLines

readLines est une méthode classique pour lire des fichiers texte. Il s'agit d'une méthode sûre, mais plutôt à déconseiller au profit de fonctions de plus haut niveau ...

Exemples simples :

mon_fichier <- readLines ("fichier.txt")
mon_fichier2 <- readLines ("http://tecfa.unige.ch/welcome.html.en")

Voici un script plus complet :

> setwd ("C:/dks/methodo/R/")
> getwd()
[1] "C:/dks/methodo/R"
> mon_text <- readLines ("./wiki_pospap_text/Assessments.txt")
> length(mon_text)
[1] 58

Le résultat est un vecteur qui contient autant d'éléments qu'il y a de lignes dans le fichier. Ce type de lecture est utile si la ligne représente quelque chose (un paragraphe par exemple).

Sinon, cette fonction readLines() permet aussi d'indiquer un encodage, et finalement il est possible de mettre un texte entier dans un seul élément avec la fonction stri_flatten (voir ci-dessous).

La fonction scan

La fonction scan() est assez flexible pour lire plusieurs types de données. Pour lire du texte, on utilisera au moins les deux paramètres file=... et what="character". Dans l'exemple suivant, on voit qu'on lit 1517 tokens (mots, nombres, caractères de ponctuation...). Par défaut, un élément (token) est séparé par un " ", mais on peut également définir d'autres caractères.

> mon_text <- scan (file="./wiki_pospap_text/Assessments.txt", what="character")
Read 1517 items
> mon_text
   [1] "contents"                "1"                       "supporting"              "assessment"             
   [5] "using"                   "icts"                    "2"                       "problem"                
   [9] "3"                       "role"                    "of"                      "icts"

Lecture de fichiers texte dans une série de strings

Utilisation de fonctions R de base pour lire dans des vecteurs

Cette méthode "readline" marchera avec n'importe quelle page HTML.
library(tm)
library(stringi)
library(proxy)
# le nom du wiki
wiki <- "http://edutechwiki.unige.ch/fr/"
# une liste de noms de pages
titles <- c("STIC:STIC_I_-_exercice_1_(Utopia)", "STIC:STIC I - exercice 1 (Nestor-Pixel)", 
            "STIC:STIC_I_-_exercice_2_(Utopia)",
            "STIC:STIC III (2012)/Module 1",  "STIC:STIC III (2012)/Module 2")

# un vecteur qui contient 5 strings vides ("")
articles <- character(length(titles))

# lecture des contenus des pages wiki. Chaque article se trouvera dans un des strings ci-dessous.
for (i in 1:length(titles)) {
    articles[i] <- stri_flatten(readLines(stri_paste(wiki, titles[i])), col = "")
}

# Création d'un corpus tm avec les article
docs <- Corpus(VectorSource(articles))

Importer des données avec Tidyverse

Il est également possible d'utiliser l'écosystème Tidyverse, une collection de paquets pour effectuer les opérations les plus fréquentes sur des données, pour importer différents types de données. Voir :

Conclusion

Cette page a proposé un survol de différentes techniques pour importer des données en R.