Problem-based learning: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
(synthèse de la partie "how to overcome Barriers")
mNo edit summary
 
(67 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Incomplete}}
{{incomplete}}
{{comment | This article is a bit too long, needs some reorganization and editing, also ''a lot'' text is quoted without reference (should be fixed soon) - [[User:DSchneider|DSchneider]] 19:39, 19 July 2006 (MEST)}}
 
==Introduction==
==Introduction==


'''Problem-based learning''' (PBL in this article) is defined by Finkle and Torp (1995) as, {{quotation |a curriculum development and instructional system that simultaneously develops both problem solving strategies and disciplinary knowledge bases and skills by placing students in the active role of problem solvers confronted with an ill-structured problem that mirrors real-world problems}}.
'''Problem-based learning''' (PBL in this article) is defined by Finkle and Torp (1995) as, {{quotation |a curriculum development and instructional system that simultaneously develops both problem solving strategies and disciplinary knowledge bases and skills by placing students in the active role of problem solvers confronted with an ill-structured problem that mirrors real-world problems}}.


=== What is PBL? ===


Source : http://sll.stanford.edu/pubs/jeepark/pblsite/skipintro.htm
Problem-based learning is an [[instructional design model]] and a variant of [[project-oriented learning]]. It is closely related to [[inquiry-based learning]].


Students engage in authentic experiences. PBL's are inherently social and collaborative in methodology and teach students essential "soft skills" as well as domain specific content and skills. Through PBL, students learn:
Real-life problems seldom parallel well-structured problems; hence, the ability to solve traditional school-based problems does little to increase relevant, critical thinking skills. Real-life problems present an ever-changing variety of goals, contexts, contents, obstacles, and unknowns which influence how each problem should be approached. To be successful, students need to practice solving ill-structured problems that reflect life beyond the classroom. These skills are the goal of PBL. With Problem-Based Learning, students engage in authentic experiences.
* Problem-solving skills
* Self-directed learning skills
* Ability to find and use appropriate resources
* Critical thinking  
* Measurable knowledge base
* Performance ability
* Social and ethical skills  
* Self-sufficient and self-motivated
* Facility with computer
* Leadership skills
* Ability to work on a team
* Communication skills
* Proactive thinking
* Congruence with workplace skills


==What is PBL?==
PBL is inherently social and collaborative in methodology and teaches students essential "soft skills" as well as domain specific content and skills. PBL is learner-centered and gives the learners progressively more responsibility and independence in their education. It encourages life-long learning.
In PBL, it is the problem that drives the curriculum. It does not test a skill, it assists in the development of the skill itself. There is no one solution: the problem is solved in an iterative process where the perception of the problem can change as do the solutions found.


;A Little Historical Background
=== What Skills do Students learn? ===
source: http://sll.stanford.edu/pubs/jeepark/pblsite/whatis.htm


Problem-Based Learning (PBL) has become popular because of its apparent benefits to student learning.
Through PBL, students learn:


PBL can be thought of as a combination of [[Cognitivism|cognitive]] and [[Socio-constructivism|social constructivist]] theories, as developed by Piaget and Vygotsky, respectively.
*'''Solving real-life problems:''' Learning to solve relevant and contextual problems congruent with workplace skills, develop initiative, performance ability and enthusiasm.
PBL is a curriculum development and delivery system that recognizes the need to develop problem solving skills as well as the necessity of helping students to acquire necessary knowledge and skills.
The first application of PBL was in medical schools which rigorously test the knowledge base of graduates. Medical professionals need to keep up with new information in their field, and the skill of life-long learning is particularly important for them. Hence, PBL was thought to be well suited for this area.
Many medical and professional schools, as well as undergraduate and graduate programs use PBL in some form, at varying capacities internationally.  


;Overview and Characteristics
*'''Efficient problem solving:''' Develop the ability to find and use appropriate resources for problem solving
(1-3 Adapted from Stepien & Gallagher 1993; Barrows, 1985 // 4 & 5 : From [http://www.pbli.org/pbl/pbl1.htm Problem Based Learning Initiative])


# Use of real world problems - problems are relevant and contextual. It is in the process of struggling with actual problems that students learn content and critical thinking skills.
*'''Independant learning:''' Employ effective self-directed and self-motivated learning skills and proactive thinking to continue learning as a lifetime habit
# Reliance on problems to drive the curriculum - the problems do not test skills; they assist in development of the skills themselves.
# problems truly ill-structured - there is not meant to be one solution, and as new information is gathered in a reiterative process, perception of the problem, and thus the solution, changes.
# PBL is learner-centered - learners are progressively given more responsibility for their education and become increasingly independent of the teacher for their education.
# PBL produces independent, life-long learners - students continue to learn on their own in life and in their careers.


*'''Self-monitoring:''' Continuously monitor and assess the adequacy of their own knowledge and of their problem-solving skills, practice critical thinking (see also [[cognitive tools]])
;Student-centered; faculty-facilitated
source : http://edweb.sdsu.edu/clrit/learningresource/PBL/WhatisPBL.html


Pose significant, contextualized, real world situations, and providing resources, guidance, and instruction to learners as they develop content knowledge and problem-solving skills (Mayo, Donnelly, Nash, & Schwartz, 1993). In PBL, students collaborate to study the issues of a problem as they strive to create viable solutions. Teaching in PBL normally occurs within small discussion groups of students facilitated by a faculty tutor (Aspy, Aspy, & Quimby, 1993, Bridges & Hallinger, 1991).
*'''Team work:''' Efficient collaboration as a member of a group, communication and leadership skills, social and ethical skills.  


Because the amount of direct instruction is reduced in PBL, students assume greater responsibility for their own learning (Bridges & Hallinger, 1991). The instructor's role becomes one of subject matter expert, resource guide, and task group consultant. This arrangement promotes group processing of information rather than an imparting of information by faculty (Vernon & Blake, 1993). The instructor's role is to encourage student participation, provide appropriate information to keep students on track, avoid negative feedback, and assume the role of fellow learner (Aspy et al., 1993).
From the [http://www.pbli.org/core.htm problem based learning initiative] of the southern illinois university and the [http://ldt.stanford.edu/~jeepark/jeepark+portfolio/PBL/skipintro.htm Stanford site on PBL]


;Going Beyond Content
=== Historical Background ===
source: http://edweb.sdsu.edu/clrit/learningresource/PBL/WhatisPBL.html


The ability to solve problems is more than just accumulating knowledge and rules; it is the development of flexible, cognitive strategies that help analyze unanticipated, ill-structured situations to produce meaningful solutions.  
Problem-Based Learning (PBL) has become popular because of its benefits to student learning.  


Real-life problems seldom parallel well-structured problems; hence, the ability to solve traditional school-based problems does little to increase relevant, critical thinking skills students need to interact with life beyond classroom walls. Real-life problems present an ever-changing variety of goals, contexts, contents, obstacles, and unknowns which influence how each problem should be approached. To be successful, students need practice solving ill-structured problems that reflect life beyond the classroom. This skill is the goal of PBL.
PBL can be thought of as a combination of [[Cognitivism|cognitive]] and [[Socio-constructivism|social constructivist]] theories, as developed by Piaget and Vygotsky, respectively.
The first application of PBL was in medical schools which rigorously test the knowledge base of graduates.
According to García-Famoso (2005), {{quotation|PBL was first applied in the 60s, in the Faculty of Health Sciences of McMaster University (Canada) and in the School of Medicine of Case Western Reserve University (United States). The main objective was twofold: to develop problem solving skills and bring learning closer to real medical problems.}}
After these first experiences, many medical and professional schools started to use some form of PBL,
for example, Harvard Medical School or, in Europe, Maastrich University.
Many medical and professional schools, as well as undergraduate and graduate programs, use PBL in some form. Over 80% of medical schools use the PBL methodology to teach students about clinical cases, either real or hypothetical (Vernon & Blake, 1993, Bridges & Hallinger, 1991).


This is probably why over 80% of medical schools use the PBL methodology to teach students about clinical cases, either real or hypothetical (Vernon & Blake, 1993, Bridges & Hallinger, 1991).
== Models of PBL, Designing PBL curricula ==


==Versions of PBL==
=== Models of PBL ===


There are many problem-based learning models. E.g. Edwin Bridges (1992) suggests that there are two versions of PBL that have been implemented in the classroom, problem-stimulated PBL and Student Centered PBL.
There are many problem-based learning models. E.g. Edwin Bridges (1992) suggests that there are two versions of PBL that have been implemented in the classroom, problem-stimulated PBL and Student Centered PBL.


;Problem Stimulated PBL (PS PBL)
'''Problem Stimulated PBL''' (PS PBL)


PS PBL uses role relevant problems in order to introduce and learn new knowledge. The Prospective Principals Program at Stanford University's School of Education employs PS PBL in its curriculum.  
PS PBL uses role relevant problems in order to introduce and learn new knowledge.  


PS PBL emphasizes 3 major goals:  
PS PBL emphasizes 3 major goals:  
# development of domain-specific skills  
* development of domain-specific skills  
# development of problem-solving skills  
* development of problem-solving skills  
# acquisition of domain-specific knowledge
* acquisition of domain-specific knowledge


;;The PS PBL Process
'''Student Centered PBL''' (SC PBL)
# Students receive the following learning materials:
## the problem ;
## a list of objectives that the student is expected to master while working on the problem ;
## a reference list of materials that pertain to the basic objectives ;
## questions that focus on important concepts and applications of the knowledge base.
#Students work in teams to complete the project, resolve the problem, and accomplish the learning objectives.
## each student has a particular role in the team - leader, facilitator, recorder, or team member
## time allotted to each project is fixed
## the team schedules its own activities and decides how to use the allotted time
# Student performance is evaluated by instructors, peers, and self using questionnaires, interviews, observation, and other assessment methods.


Throughout the process, instructors serve as resources to the teams and provide guidance and direction if the team asks for it or becomes stymied in the project.
SC PBL has the same goals as PS PBL, but includes one more: fostering life-long learning skills. Physicians are one group of professionals who are required to stay current with new developments in their fields. The skills of a life-long learner are particularly important for this group. Hence, several medical schools employ student centered PBL.  


;Student Centered PBL (SC PBL)
The major differences with PS PBL are in student responsibilities.
SC PBL is similar to PS PBL in some aspects. SC PBL has the same goals as PS PBL, but includes one more: fostering life-long learning skills. Physicians are one group of professionals who are required to stay current with new developments in their fields. The skills of a life-long learner are particularly important for this group. Hence, several medical schools employ student centered PBL.
In SC PBL:
 
* students themselves identify the learning issues they wish to explore
;The SC PBL Process
* students determine the content to be mastered
# Students receive the problem situation.
* students determine and locate the resources to be used  
# Students work on the problem in project teams.
# Students are evaluated in multiple ways by instructors, peers, and self.
 
The process appears to be similar to that of PS PBL, but there are significant differences in each step, which are driven by the goal of fostering life-long learning skills. The major differences are in student responsibilities. In SC PBL:
* students identify the learning issues they wish to explore;
* students determine the content to be mastered;
* students determine and locate the resources to be used.


In short, students have self-defined learning issues.
In short, students have self-defined learning issues.
As is the case with PS PBL, students decide how to appropriately use the newly acquired information and knowledge in order to solve the problem at hand.
As is the case with PS PBL, students decide how to appropriately use the newly acquired information and knowledge in order to solve the problem at hand.


;Case-based PBL
'''Case-based PBL'''
 
See [[learning by design]].
See [[learning by design]].
The typical sequence of activities in a Learning-by-Design unit has students encountering a design challenge and attempting a solution using only prior knowledge. Students compare and contrast their ideas, identify what they need to learn to move forward in addressing the design challenge, choose a learning issue to focus on, and design and/or run a laboratory activity to examine that issue. Following this are cycles of exploratory and experimental work.Kolodner, Crismond, Gray, Holbrook & Puntembakar (1998)


==The Advantages of PBL==
=== Designing PBL ===


source : http://edweb.sdsu.edu/clrit/learningresource/PBL/PBLadvantages.html
'''Integrating PBL into a Curriculum'''
Les "Goals and Objectives" sont tirés de...Summary of Psychological Basis of PBL
source: ??? (un tableau si je me rappelle bien...)


*Emphasis on Meaning, Not Facts
Design Considerations:
*Increased Self Directed learning
* How should PBL be incorporated into the curriculum?
*Higher Comprehension and Better Skill Development
* What problems should be used and how should they be presented?
*Interpersonal Skills and Teamwork
* What are the instructional goals?
*Self-Motivated Attitude
* How should small groups be formed?
* '''Goals and Objectives of PBL :''' Foster problem-solving skills in students.
* How much should each problem be prestructured?
* '''Goals and Objectives of PBL :''' Enhance acquisition, retention, and use of knowledge.
* How to evaluate the program and the students?
* '''Goals and Objectives of PBL :''' Transfer of Principles and Concepts.
* What resources should be available?
*Level of Learning
* How to prepare students and faculty for PBL? (Bridges, 1992).


Why is there an increase in scores resulting in PBL? Information theory links 3 conditions to subsequent improved retrieval and use. Bridges & Hallinger (1991) report that students improve their comprehension because they:
'''Creating appropriate Problems'''
# are better at activating prior knowledge,
# learn in a context resembling their future context, and
# elaborate more fully on the information presented.
Increased elaboration promotes mental processing, understanding, and recall. Because content is learned in context, definitions, information, theories, correlations, and principles are learned and integrated with one another (Mandin, Harasym, & Watanabe, 1995).


See also the [[learning level]] article.
PBL problems should be created with :
* introduction
* content
* learning objectives
* resources
* expected outcome
* guiding questions
* assessment exercises
* time frame
(Bridges, 1992)


== Barriers and disadvantages ==
The best format for problems is unorganized, unsynthesized, and open-ended because this allows for student processing. Students are motivated to use their reasoning skills and relate the content to their own context and previous knowledge. Focus problems on current events, student lives, or relationships to actual occurrences. Problems should be interdisciplinar and task oriented. It should not only focus on the large problem but also take students through the objectives. (Albanese & Mitchell, 1993)


;The Barriers to PBL
Novice learners require more structure and cues while more experienced students are self-directed learners. Software can be used in the PBL curriculum, but avoid telling students when the solution is reached. This stops the learning process. Point out inappropriate strategies.
source : http://edweb.sdsu.edu/clrit/learningresource/PBL/PBLBarriers.html
Complex problems usually require learners to exhibit management, research, and thinking skills that help distinguish less expert from more expert performers. This differentiation can help serve as a grading standards in the class.(Albanese & Mitchell, 1993)


# Changing the Curriculum
'''Getting Started'''
# The transition is difficult
# More Time to Teach Same Content
# PBL Costs More
# Faculty lack extrinsic rewards for PBL teaching
# Faculty lack facilitator skills.


;Disadvantages of PBL
* Anticipate and manage anxiety (Bernstein, Tipping, Bercovitz, & Skinner, 1995).
source: http://edweb.sdsu.edu/clrit/learningresource/PBL/DisPBL.html
* Explain to all involved what is happening and why.
* Tutors should receive training (Foley, Levy, Russinof, & Lemon, 1993).
* Students should be oriented to PBL.
* State the PBL goals.  
* Randomly assign students to PBL (Mennin Friedman, Skipper, Kalishman, & Snyder, 1993).  


# Academic achievement : Few academicians doubt the ability of students schooled in PBL to exhibit strong reasoning and team building skills.
According to Schmidt and Moust (1989), the student progresses through a series of steps, "The Seven Jump", during the PBL process.
# Time demands.
# Clarify unknown terms and concepts in the problem description.
# Role of the student : Because of the orientation towards the subject-matter expertise of their instructor and the traditional memorization of facts required of students, many students appear to have lost the ability to "simply wonder about something" (Reithlingshoefer, 1992).  
# Define the problem(s). List the phenomena or events to be explained.
# Role of the teacher : In PBL, the instructor acts more as a facilitator than disseminator of information.  
# Analyze the problem(s). Step 1. Brainstorm. Try to produce as many different explanations for the phenomena as you think of. Use prior knowledge and common sense. Student outcomes: activation of prior knowledge, elaboration, restructuring of information, organization of information, intrinsic motivation (see also [[Flow theory]], [[Motivation]]).  
# Appropriate problems : Without problems that encompass both a large goal and specific objectives which students must find on their way to reaching the goal's solution, there is a good chance that important information will not be studied.  
# Analyze the problem(s). Step 2. Discuss. Criticize the explanations proposed and try to produce a coherent description of the processes that, according to what you think, underlie the phenomena or events.
# Student assessment : PBL differs from traditional instruction in a variety of ways, and therefore student knowledge and achievement may be better measured with alternate assessment methods.
# Formulate learning issues for self-directed learning.
# Fill in gaps in your knowledge through self-study.
# Share your findings with your group and try to integrate the knowledge acquired into a comprehensive explanation for the phenomena or events. Check whether you know enough now. Student outcomes: restructuring, applying, problem solving.


;How to Overcome Barriers and Implement PBL
'''Evaluation'''
source: http://edweb.sdsu.edu/clrit/learningresource/PBL/PBLimplementing.html


# Overcoming Resistance : Show faculty members examples of success and to explain how it works. Provide them with training. Engage them in activities such as observing facilitators.
Because instruction and learning is different in problem based settings than traditional instruction, many instructors find student evaluation difficult.
# Rewarding Faculty for PBL Participation.
# Finding Time and Money.
# Training teachers to use PBL.
# Strategy : Faculty should read about PBL and how to facilitate small group discussions. Faculty should envision the situation from the student's view. Faculty should create a forum for facilitators to discuss PBL issues as they arise. Faculty should promote seek feedback from students.


==Features of a PBL Problem==
PBL encourages development of meta-cognitive skills like group learning or research and communication skills and aims transferring knowledge to novel situations. With such multiple purposes for PBL, it is important to consider a variety of evaluation techniques:


PBL problems should be created with : (1) introduction, (2) content, (3) learning objectives, (4) resources, (5) expected outcome, (6) guiding questions, (7) assessment exercises, (8) and time frame (Bridges, 1992).  
* Written examinations: should be designed to ensure transference of skills to similar problems or subject domains.
* Practical examinations: used to ensure that students are able to apply skills learned during the course.
* Concept maps: much of the learning that goes on during PBL is more than just a compilation of facts. As such, written examinations may not be an adequate measure of student growth. Requiring students to generate concept maps, in which they depict their knowledge through the creation of identified nodes and links, may present another option to determine their cognitive growth.
* Peer assessment: because life outside the classroom usually requires working with others, peer assessment is a viable option to measure student growth. Providing students with an evaluation rubric often helps guide the peer evaluation process. This process also emphasizes the cooperative nature of the PBL environment.
* Self assessment: an important element of PBL is to help students identify gaps in their knowledge base in order for more meaningful learning to result. Self assessment allows students to think more carefully about what they know, what they do not know, and what they need to know to accomplish certain tasks.
* Facilitators/tutor assessment: the feedback provided by tutors should encourage the students to explore different ideas. It is important that facilitators do not dominate the group and facilitate learning and exploration. Tutor assessment may consist of how successful individuals interacted with their group and their cognitive growth.
* Oral Presentations: because so much of work life revolves around presenting ideas and results to peers, oral presentation in PBL provide students an opportunity to practice their communication skills. Presenting findings to their group, the class, or even a real-life audience can help strengthen these skills.
* Reports: Written communication is another skill important for students. Requiring written reports allows students to practice this form of communication.  


These descriptors are for use by facilitators, not students. It is important to have a facilitator's guide and a student's copy of the problem. The students must be guided to reach both the objectives involved in solving the problem and the objectives related to the process.
Evaluation is an iterative process. Be prepared to make changes along the way based on experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995).


;Creating An Appropriate Problem
'''Ressources'''


* Choosing a relevant problem,
Ensure resources and time are available for self-study. "If students are to be genuinely empowered with their own learning, it is important to provide them with the necessary infrastructure." (Rangagachari, 1991). PBL students study in the library more than conventional students and study more during the day than the evening. Increasing the time spent instructing students decreases the time students spend in self-study (Williams, Saarinen-Rahikka, & Norman, 1995).
* Ensuring that the problem's coverage includes both the big idea and basic skills, and
If students must learn basic science or similar material for national standardized examinations, increase student access to self-assessment, provide practice examinations, allow additional examination preparation time (Mennin et al., 1993).
* Ensuring the problem's complexity mimics real-life problems.  


;Relevancy
See also [[Problem-based learning and electronic games]]
Because most PBL solutions take an extended period of time to reach resolution, it is important to maintain motivation, which can be enhanced when students understand the relevance of their class work (Ostwald, Chen, Varnam, & McGeorge, 1992). Another advantage that ensues by incorporating relevant problems is the ability of students to transfer their acquired skills and knowledge to life outside the classroom, and their ability to solve real world problems.


To increase relevancy : focusing problems on current events, student lives, or relationships to actual occurrences at the local, national, or international level. Basing instructional problem on existing problems not only helps students see the relevancy of their activity, but helps them develop an appreciation for the way in which professionals analyze, design, and develop solutions to their problems.
== Roles in PBL ==


;Coverage
=== Instructor's Role ===
To help ensure your problem will guide students to appropriate information :
(1) identify the big picture, major concept, or main idea you wish students to achieve. This will serve as a backbone to your problem.
(2) identify the basic facts and concepts you wish students to uncover as they solve their problem. Sometimes referred to as "objectives," these basic units serve as the touchstones students should encounter in their problem solution.
(3) create a problem that not only focuses students on the large problem but also takes them through the objectives.
(4) make sure resources are available for students to reference during their problem analysis and solution.


;Complexity
Teaching in PBL normally occurs within small discussion groups of students facilitated by a faculty tutor (Aspy, Aspy, & Quimby, 1993, Bridges & Hallinger, 1991, Mayo, Donnelly, Nash, & Schwartz, 1993).
Complex problems offer many advantages over simple problems.  
Because the amount of direct instruction is reduced in PBL, students assume greater responsibility for their own learning. The instructor's role becomes one of subject matter expert, resource guide, and task group consultant. This arrangement promotes group processing of information rather than an imparting of information by faculty (Vernon & Blake, 1993).
(1) complexity helps ensure that there is no "one right" answer. Having multiple correct answers that approach the problem from various perspectives and solutions can springboard to class discussions that stimulate student higher level thinking.  
The tutor is most active in planning the PBL, the content and sequence of projects.
(2) complex problems often allow for the integration of interdisciplinary solutions; a common occurrence in solving real world problems.  
He encourages student participation, provides appropriate information to keep students on track, gives immediate and appropriate feedback, and assumes the role of mentor, tutor or fellow learner (Aspy et al., 1993).  
(3) complex problems usually require learners to exhibit management, research, and thinking skills that help distinguish less expert from more expert performers (Albanese & Mitchell, 1993). This differentiation can help serve as a grading standards in the class.
The tutor acts as metacognitive coach, serving as model, thinking aloud with students and practicing behavior he wants his students to use (Stepien and Gallagher, 1993.
He also evaluates the students.


==How to Structure PBL==
=== Student's Role ===


source: http://edweb.sdsu.edu/clrit/learningresource/PBL/PBLStructure.html
'''The individual student in PBL'''


;Design Considerations
In PBL, students have responsibility for their own learning by identifying their learning issues and needs.
# How should PBL be incorporated into the curriculum?
# What problems should be used and how should they be presented?
# What are the instructional goals?
# How should small groups be formed?
# How much should each problem be prestructured?
# How to evaluate the program and the students?
# What resources should be available?
# How to prepare students and faculty for PBL? (Bridges, 1992).


;Getting Started
The students work with the following learning materials:
Anticipate and manage anxiety (Bernstein, Tipping, Bercovitz, & Skinner, 1995). Explain to all involved what is happening and why. Tutors should receive training (Foley, Levy, Russinof, & Lemon, 1993). Students should be oriented to PBL. State the PBL goals. Randomly assign students to PBL (Mennin Friedman, Skipper, Kalishman, & Snyder, 1993).  
* the problem situation
* a list of objectives that the student is expected to master while working on the problem
* a reference list of materials that pertain to the basic objectives
* questions that focus on important concepts and applications of the knowledge base.


;Creating Problems
Time allotted to each project is fixed.
The content to be explored should be reasonable for the time allotted. If time is a constraint, use shorter problems and fewer objectives (Blumberg, Soloman, & Shehata, 1994). Incorporate process objectives and content objectives. PBL effectiveness is dependent upon students developing learning issues that correspond to proposed objectives. Problems should cover sufficient content and provide mechanisms for students to reach objectives.  
Students work on the problem in project teams.
Students are evaluated in multiple ways by instructors, peers, and self, using questionnaires, interviews, observation, and other assessment methods.


;Guidelines for Problems
'''Groups in PBL'''
# common situation to serve as a prototype for other situations,
# significant,
# prevention is possible,
# interdisciplinary,
# cover objectives,
# task oriented,
# and complex enough to incorporate prior knowledge (Albanese & Mitchell, 1993).


Novice learners require more structure and cues while more experienced students are self-directed learners. The best format for problems is unorganized, unsynthesized, and open-ended because this allows for student processing (Albanese & Mitchell, 1993). Students are motivated to use their reasoning skills and relate the content to their own context and previous knowledge (Albanese & Mitchell, 1993). Software can be used in the PBL curriculum, but avoid telling students when the solution is reached. This stops the learning process. Point out inappropriate strategies.
Students work in teams to complete the project, resolve the problem, and accomplish the learning objectives.  


;Evaluation
Groups usually consist of 5 to 7 students. Four roles are possible:
Evaluation is an iterative process. Be prepared to make changes along the way based on experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995).  
* project leader - proposes meeting agendas, suggests division of labor, and develops the overall project plan.
* facilitator - describes the process to be followed during the steps of the project plan, determines appropriate time to proceed in plan, and suggests adjustments to the plan as needed.
* recorder - takes group notes of each meeting.
* team member - takes individual notes, participates in discussion, and reviews resource materials.
Some PBL models include a mentor or tutor in the group (often a faculty member, or another student).


;The Library
The team schedules its own activities and decides how to use the allotted time
Ensure resources and time are available for self-study. "If students are to be genuinely empowered with their own learning, it is important to provide them with the necessary infrastructure." (Rangagachari, 1991). PBL students study in the library more than conventional students and study more during the day than the evening. Increasing the time spent instructing students, decreases the time students spend in self-study (Williams, Saarinen-Rahikka, & Norman, 1995). Limit instructional time to promote self-study by students. If students must learn basic science or similar material for national standardized examinations, increase student access to self-assessment, provide practice examinations, allow additional examination preparation time (Mennin et al., 1993).


;Example & Facilitation of PBL
See also [[Problem-based learning and social software]]
Real life problems are inherently interdisciplinary and all disciplines can tailor the exampled approach that follows. Learning in the problem-based curriculum is initiated with the presentation of an ill-structured problem. Programs that focus on "neat" well-defined problems do not seem to have an effect on the way students approach real problems in the career path they choose (Gallagher, Stepien, & Rosenthal, 1992). To set the stage and orchestrate a PBL format, presented here are points an instructor may incorporate to achieve such a course, with a medical school example case in point.


See an example: [[Medicine Blends Computers and PBL]]
== Discussion ==


'''Summary'''
=== Application of PBL: Advantages, Disadvantages ===
Once teachers relinquish the lecturer's role, they are forced to develop and enhance their repertoire of teaching responses: listening to students; answering questions; helping students frame good questions; formulate problems, and make effective decisions; directing students to appropriate resource materials/faculty; and being fellow learners. Using computers to achieve these ends addresses concerns associated with efficiency and economy of structuring PBL courses (Farnsworth, 1994).


== PBL according to the Stanford Center for Innovations in Learning ==
'''Advantages'''


[http://sll.stanford.edu/pubs/jeepark/pblsite/inclassview.htm Problem-based learning]
Why is there an increase in scores resulting in PBL?
Information theory links 3 conditions to subsequent improved retrieval and use. Bridges & Hallinger (1991) report that students improve their comprehension because they:  
# are better at activating prior knowledge,
# learn in a setting resembling their future context, and
# elaborate more fully on the information presented.
Increased elaboration promotes mental processing, understanding, and recall. Because content is learned in context, definitions, information, theories, correlations, and principles are learned and integrated with one another (Mandin, Harasym, & Watanabe, 1995).


=== What does PBL look like in the classroom? ===
See also the [[learning level]] article.
There are several models of how PBL works in the classroom. All of them agree that in a PBL curriculum,
# students work through a series of problems designed to:
##  be authentic (i.e. address real-world concerns)
## target defined areas of the curriculum
## be "ill-structured" - they must be defined and analyzed through inquiry from a minimum of presenting information
## approximate the real world, so that students find  themselves actually engaged in the problem and not just observers of it;
# the role of the instructor changes from a "sage on the stage" to a "guide on the side";
# students work collaboratively in small groups toward the problem's resolution.  


Barrows (1985) proposes the following model of the PBL process :
The [http://www.bie.org/ Buck Institute fro Education (BIE)] sees PBL as a mean of developping what they call 21st century skills, meaning
* ICT literacy
* cognitive skills like critical thinking, creativeness
* Interpersonal skills
* Self- and task-managment skills
* personal charcteristics like ethical sensibility, civic responsibility, accountability


<table width="98%" border="1" align="center">
'''Disadvantages'''
<tr>
  <td>Process</td>
  <td>Purpose</td>
</tr>
<tr>
  <td>Students read and address problem, without background preparation.</td>
  <td>
*Teaches students to encode and organize information in useful ways.
*Allows students to find what they know and what they don¹t know. Misconceptions can be corrected in discussion of the problem.
*Mimics the real life context they will face as doctors.</td>
</tr>
<tr>
  <td>Students discuss and analyze problem using prior knowledge and resources available.
Tutor poses questions: ie. Do you need more information? Are you sure of the facts or will a review be helpful? Do you think more information on this area would be helpful?
Tutors encourage hypotheses are grounded in science.</td>
  <td>
*Development of cognitive skills for problem-solving process
*Development of self-monitoring skills to identify the learning needs
*Development of habitual student-initiated questioning
  </td>
</tr>
<tr>
  <td>Students decide what they need to know and where they might best find the information. They decide which resources to use (people, published papers, etc.).</td>
  <td>
*Self-directed study
  </td>
</tr>
<tr>
  <td>Students revisit problem with new information and knowledge acquired during self-study.
Students critique learning resources used.
Group decides appropriate hypotheses and critiques prior performance.</td>
  <td>
*New organization of information to problem-solve.
*Self-assessment
*Peer-assessment</td>
</tr>
<tr>
  <td>Students should think about how what they learned has added to their understanding</td>
  <td>
*Reflection
*Self-assessment
  </td>
</tr>
</table>


Schmidt and Moust describe the main frame of the process of PBL as iterative and cyclical in nature.
Introducing PBL means


# Students approach the problem, without any prior background research.
* changing the Curriculum
# In the small group tutorial, they analyze the problem based on prior-knowledge, elaborate on the knowledge through discussion, develop new knowledge structures and formulate their own learning objectives.
* introducing higher costs
# Students proceed to a period of self-directed study. This helps them to develop, fine-tune, and restructure the existing knowledge structure.
* higher time demands: PBL takes more time to teach the same content
# Students then return to the small group tutorial, where they integrate and apply the knowledge they gained during self-directed study in order to problem-solve.  
* change of roles: Students have to change attitude and go from memorization of facts to an active searching for information(Reithlingshoefer, 1992). Teachers have to shift from dissemination of information to a tutor's and guide role.
Students will then return to the first step and continue to cycle until the problem is fully addressed.
* formulation of appropriate problems that encompass both a large goal and specific objectives
* setting up appropriate assessment
* facing a lack of extrinsic rewards for PBL teaching


=== How do groups function in PBL? ===
=== Is PBL better? ===
Teams are responsible for scheduling their own activities and deciding how to use their time to solve the problem and master the learning objectives.
Depending on the version of PBL, the teams have more or less responsibility for determining learning issues and locating resource materials required to solve the problem.
Groups usually consist of 5 to 7 students. Each member of the group maintains a particular role throughout the duration of the project. The four possible roles are:
# project leader - proposes meeting agendas, suggests division of labor, and develops the overall project plan.
# facilitator - describes the process to be followed during the steps of the project plan, determines appropriate time to proceed in plan, and suggests adjustments to the plan as needed.
# recorder - takes group notes of each meeting.
# team member - takes individual notes, participates in discussion, and reviews resource materials.


Other PBL models include a mentor or tutor in the group. This is often a faculty member, but another student sometimes functions in this role. Research is mixed as to the domain-specific expertise required of the mentor. It is unclear whether subject expertise is necessary in order to be an effective tutor.
When determining the value of PBL curriculum, the literature has focused on 4 components :


=== What does the individual do in PBL? ===
* Attitudes: Students enrolled in PBL courses appear to have a more favorable attitude toward their course than students schooled in traditional instruction. Improved attitudes contribute to a variety of factors including increased course enrollment, enhanced interest in major course of study, and positive feedback from faculty and employers (Pincus, 1995); a reduced dropout rate (Bridges & Hallinger, 1991; Pincus, 1995); and an increase in student comments concerning the advantages of PBL after their learning experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995). Schmidt, Henny, and de Vries (1992) conclude that "problem based curricula do appear to provide a friendlier and more inviting educational climate."


The individual student in PBL has an active role in learning. PBL requires that students have responsibility for their own learning by identifying their learning issues and needs.
* Basic knowledge: Test results seem split on basic knowledge comprehension. In the medical field, although it was sometimes found that students schooled with PBL performed worse on standardized tests, they performed better on clinical tests and equal on essay tests to conventionally-schooled students (Albanese, 1993). Not all studies are favorable to PBL, but Albanese found that PBL knowledge is more deeply ingrained and less likely to be forgotten.
According to Schmidt and Moust (1989), the student progresses through a series of steps, "The Seven Jump", during the PBL process.
# Clarify unknown terms and concepts in the problem description.
# Define the problem(s). List the phenomena or events to be explained.
# Analyze the problem(s). Step 1. Brainstorm. Try to produce as many different explanations for the phenomena as you think of. Use prior knowledge and common sense.
#* student outcomes:activation of prior knowledge, elaboration, restructuring of information, organization of information, intrinsic motivation]
# Analyze the problem(s). Step 2. Discuss. Criticize the explanations proposed and try to produce a coherent description of the processes that, according to what you think, underlie the phenomena or events.
# Formulate learning issues for self-directed learning.
# Fill in gaps in your knowledge through self-study.
# Share your findings with your group and try to integrate the knowledge acquired into a comprehensive explanation for the phenomena or events. Check whether you know enough now.
#* student outcomes: restructuring, applying, problem solving]


A NASA sponsored project, ''The Classroom of the Future'', employs PBL in its curriculum. The project offers classroom ready activities for teachers to use at various grade levels. The project provides guidance for both teachers and students in order to help them adjust to and utilize the PBL curriculum. In the guide for students, the project suggests similar problem-solving steps:
* Problem solving ability: Reasoning and problem solving skills: The evidence appears supportive in finding PBL students better than conventional students in analyzing atypical medical cases (Albanese, 1993), and in having stronger problem solving skills (Gallagher, Stepien, & Rosenthal, 1992).


# Read and analyze the problem scenario.
* Study habits: Team work Most PBL is done in small groups. Therefore it is not surprising to find that students who learn in this context tend to be more oriented toward collaborative learning.
# List what is known.
# Develop a problem statement describing what the group is trying to solve, produce, respond to, or find out.
# List what the group needs to find out.
# List possible actions.
# Analyze information.
# Present findings


An important objective of PBL is that students become responsible for their own learning and for what they will actually research. Consequently, throughout the PBL process, as students define and analyze the problem, they generate "learning issues."
== Examples and links ==
Learning issues are questions generated by the students that need to be answered in order to solve the problem.
When the problem has been developed to the point that further analysis and understanding is inhibited by their lack of knowledge, the students undertake their self-directed learning, guided by the "Learning Issues" and motivated by the actions they anticipate taking.
The design of the problem and questioning by the teacher/tutor will lead students to identify learning issues relevant to the curriculum content objectives.
Some versions of PBL provide some learning issues for students in the form of objectives. In other versions of PBL, students are totally responsible for generating their learning needs.


===What is the role of the instructor in PBL?===
'''Examples'''
All of the literature reviewed in the creation of this site is unanimous about one aspect of PBL: the role of the instructor.
In PBL, the instructor serves as a resource to the student teams. The instructor is frequently acts as a mentor or tutor to the group. The instructor relinquishes the role of the dispenser of information.
The instructor is most active in planning the PBL the content and sequence of projects, providing immediate feedback on student work and discussion, and evaluating students.
In the classroom, teachers should act as metacognitive coaches, serving as models, thinking aloud with students and practicing behavior they want their students to use (Stepien and Gallagher, 1993).
Teachers coax and prompt students to use questions such as "What is going on here? What do we need to know more about? What did we do during the problem that was effective?" and take on responsibility for the problem. Over a period of time, students become self-directed learners, teachers then fade (Stepien and Gallagher, 1993).
Research suggests that students benefit from immediate feedback from instructors so that misconceptions can be cleared promptly (Norman and Schmidt, 1992). It is the job of the instructor to be aware of the progress and conversations within the groups so that students continue on fruitful paths.


The instructor must also prepare and adjust to the changes that accompany the implementation of PBL.
* [[Medicine Blends Computers and PBL]]
In addition to the shift in the role of the instructor, there is also a change in the structure of class time. Some authors (Schmidt, Bridges, Barrows) strongly suggest that the instructor provide unstructured time in the class in order for students to assemble in their teams, work with resources, contact and meet with faculty members who may be helpful to their project, and accomplish other tasks necessary in the resolution of the problem.
Some research (Gijselaers and Schmidt, 1992) has shown that there is a point of diminishing returns. After a certain number of hours per week, the amount of teacher-centered time in class detracts from students' self-study time.
The instructor may also need to address the perceived delay in the student performance that often occurs. Research shows that PBL students may not achieve as much, initially with the implementation of PBL (Schmidt, et. al, 1996). However, PBL students retain more than their traditionally educated counterparts and learn life-long, self-directed learning skills that other students may not.


=== How to do PBL ===
* [[Ace Training Ltd. A complete Case Study of Problem-based learning]]


The Teacher Pages of NASA's Classroom of the Future provides an informative and practical way to use PBL in the classroom.
* [http://ldt.stanford.edu/~jeepark/jeepark+portfolio/PBL/example2.htm Examples] of PBL from the Stanford Learning Laboratory.(find examples of PBL at university Level, in biology, environmental sciences, high School level, economics, environmental sciences, history, ancient worlds and english).
Savery and Duffy (In Press), discuss issues for [[instructional design]] in [[Constructivism|constructivist]] environments:  
* Anchor all learning activities to a larger task or problem.
* Support the learner in developing ownership for the overall problem or task.  
* Design an authentic task.  
* Design the task and the learning environment to reflect the complexity of the environment students should be able to function in at the end of learning.  
* Give the learner ownership of the process used to develop a solution.
* Design the learning environment to support and challenge learners' thinking.
* Encourage testing ideas against alternative views and alternative contexts.
* Provide opportunity for support and reflection on both the content learned and the learning process.  


Barrows (How to Design a Problem Based Curriculum for the Pre-Clinical Year, 1985) also provides a suggested list of objectives for a course and recommends that both faculty and students are provided with the list at the start of the course. Although Barrows specialized in the application of PBL in medical education, his ideas can be generalized to other laboratory sciences. Here are his suggested objectives:
;University level
By the end of the course, the student should be able to demonstrate capabilities in the following areas:


''Analytical Reasoning Skills ''
* [http://www.udel.edu/pbl/curric/bisc207prob.html Biology]
* Generate several hypotheses
* Appropriate use of hypothesis-oriented inquiry-strategy
* Problem synthesis
* New hypothesis or new inquiry approach
* Protocol-oriented or routine inquiry
* Appropriate laboratory or diagnostic tests
* Final working hypothesis
* Management plan to correct the problem


''Clinical or Laboratory skills''
* [http://www.designworlds.com/techscape/Sherm_Inservice.html Teacher Training in Science]
Self-assessment and self-study skills
Sherman Rosenfeld and Yehuda Ben-Hur, PBL in Science and Technology: A Case Study of Professional Development, Department of Science Teaching, Wizmann Institute of Science
* Assess adequacy of knowledge and reasoning skills in evaluating problems presented
* List information that needs to be reviewed or learned


''Knowledge''
* [http://www-fhs.mcmaster.ca/mhsi/problem-.htm Problem-Based Learning] at McMaster University (Canada).
* List of knowledge that needs to be learned and appropriately applied in analysis of problems


== Assessment of PBL : Assessing student achievement ==
;High School Level
source:http://edweb.sdsu.edu/clrit/learningresource/PBL/webassess/studentNclasses.html


Because instruction and learning is different in problem based settings than traditional instruction, many instructors find student evaluation difficult.
* [http://score.rims.k12.ca.us/activity/bubbles/ History]
PBL encourages development of meta-cognitive skills like group learning or research and communication skills and aims transferring knowledge to novel situations. With such multiple purposes for PBL, it is important to consider a variety of evaluation techniques.


San Diego State University's  [http://edweb.sdsu.edu/clrit/learningresource/PBL/webassess/studentNclasses.htmlInstructional Technology Initiative Web Site] (retrieved 19:39, 19 July 2006 (MEST)) suggests the following ideas for assessment:
* [http://score.rims.k12.ca.us/activity/ancientworld/index.html Ancient World]


* Written examinations : should be designed to ensure transference of skills to similar problems or subject domains.
;Commercial PBL example cases
* Practical examinations : used to ensure that students are able to apply skills learned during the course.
* Concept maps : Much of the learning that goes on during PBL is more than just a compilation of facts. As such, written examinations may not be an adequate measure of student growth. Requiring students to generate concept maps, in which they depict their knowledge through the creation of identified nodes and links, may present another option to determine their cognitive growth.
* Peer assessment : Because life outside the classroom usually requires working with others, peer assessment is a viable option to measure student growth. Providing students with an evaluation rubric often helps guide the peer evaluation process. This process also emphasizes the cooperative nature of the PBL environment.
* Self assessment : An important element of PBL is to help students identify gaps in their knowledge base in order for more meaningful learning to result. Self assessment allows students to think more carefully about what they know, what they do not know, and what they need to know to accomplish certain tasks.
* Facilitators/tutor assessment : The feedback provided by tutors should encourage the students to explore different ideas. It is important that facilitators not dominate the group, facilitate learning and exploration. Tutor assessment may consist of how successful individuals interacted with their group and their cognitive growth.
* Oral Presentations : Because so much of work life revolves around presenting ideas and results to peers, oral presentation in PBL provide students an opportunity to practice their communication skills. Presenting findings to their group, the class, or even a real-life audience can help strengthen these skills.
* Reports : Written communication is another skill important for students. Requiring written reports allows students to practice this form of communication.


;Assessing the value of a PBL curriculum
* [[Ace Training Ltd. A complete Case Study of Problem-based learning]]
source: http://edweb.sdsu.edu/clrit/learningresource/PBL/webassess/curriculum.html


When determining the value of PBL curriculum, the literature has focused on 4 components : (a) attitudes, (b) basic knowledge, (c) problem solving ability, and (d) study habits.
'''Various links'''


Attitudes: Students enrolled in PBL courses appear to have a more favorable attitude toward their course than students schooled in traditional instruction. Improved attitudes contribute to a variety of factors including increased course enrollment, enhanced interest in major course of study, and positive feedback from faculty and employers (Pincus, 1995); a reduced dropout rate (Bridges & Hallinger, 1991; Pincus, 1995); and an increase in student comments concerning the advantages of PBL after their learning experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995). Schmidt, Henny, and de Vries (1992) conclude that "problem based curricula do appear to provide a friendlier and more inviting educational climate."
* [[Problem-based learning and electronic games]]


Basic knowledge: Test results seem split on basic knowledge comprehension. In the medical field, although it was sometimes found that students schooled with PBL performed worse on standardized tests, they performed better on clinical tests and equal on essay tests to conventionally-schooled students (Albanese, 1993). Not all studies are favorable to PBL, but Albanese found that PBL knowledge is more deeply ingrained and less likely to be as easily forgotten.
* [[Problem-based learning and social software]]


Reasoning and problem solving skills: The evidence appears supportive in finding PBL students better than conventional students in analyzing atypical medical cases (Albanese, 1993), and in having stronger problem solving skills (Gallagher, Stepien, & Rosenthal, 1992).
* [http://www.techforlearning.org/PBLresources.html Problem-based Learning resources] page with a comprehensive list of links of the technology for learning consortium.


Team work Most PBL is done in small groups. Therefore it is not surprising to find that students who learn in this context tend to be more oriented toward collaborative learning.  
* [http://www.imsa.edu/programs/pbln/ Problem-Based Learning] comprehensive site of the Illinois maths and science academy with description of pbl, rersources, examples and more.


Summary
* [http://www.samford.edu/ctls/archives.aspx?id=2147484112 Problem-based learning pages] in the archives of the center for teaching, learning and scholarship from the samford university, alabama, previously center for problem-based learning


PBL students obtain residency positions equally well and better than average, and residency supervisors rate these graduates equal or better than conventional students (Albanese, 1993). In general, the research points to the fact that students schooled in problem based learning "are better able to apply their knowledge of the clinical sciences and have better developed clinical reasoning skills than (traditionally instructed) students." (Lewis, Buckley, Kong, & Mellsop, 1992).
* [http://www.learning-theories.com/problem-based-learning-pbl.html Problem-Based Learning] pages of the learning-theories.com site: knowledge base and webliography.


==Examples and links==
* [http://www.ed.psu.edu/nasa/probtxt.html pennsylvania state university and nasa wiki-like page on pbl]


;University level
* [http://www.udel.edu/pbl/ very complete pbl site] of the university of delaware.


* Biology : http://www.udel.edu/pbl/curric/bisc207prob.html
* [http://www.mcli.dist.maricopa.edu/pbl/info.html PBL pages] of the maricopa center for learning and instruction MCLI, arizona with a searchable archive.


* Teacher Training in Science: Sherman Rosenfeld and Yehuda Ben-Hur, PBL in Science and Technology: A Case Study of Professional Development, Department of Science Teaching, Wizmann Institute of Science, [http://www.designworlds.com/techscape/Sherm_Inservice.html]
* [http://pbl.cqu.edu.au/content/online_resources.htm resources site] from the queensland university


;High School Level
'''Journals:'''


* History : http://score.rims.k12.ca.us/activity/bubbles/
* [http://docs.lib.purdue.edu/ijpbl/ The Interdisciplinary Journal of Problem-based Learning (IJPBL)] is an open access journal that publishes relevant, interesting, and challenging articles of research, analysis, or promising practice related to all aspects of implementing problem-based learning (PBL).
 
* Ancient World : http://score.rims.k12.ca.us/activity/ancientworld/index.html
 
;Commercial PBL example cases
 
* [[Ace Training Ltd. A complete Case Study of Problem-based learning]]
 
;links
* http://sll.stanford.edu/pubs/jeepark/pblsite/research.htm
 
* http://www.ed.psu.edu/nasa/probtxt.html
** comment faire un cours PBL
** avec exemples (http://www.windows.ucar.edu mais pas tout PBL je pense)
 
* http://edweb.sdsu.edu/clrit/home.html
 
* une webquest sur le PBL : http://edweb.sdsu.edu/clrit/PBL_WebQuest.html
 
* http://www.odont.lu.se/projects/ADEE/shanley.html
 
* http://www.udel.edu/pbl/problems/
**  différents PBL


== References ==
== References ==


Albanese, M., & Mitchell, S. (1993). Problem-based learning: A review of the literature on its outcomes and implementation issues. Academic Medicine. 68(1), 52-81.
Albanese, M., & Mitchell, S. (1993). Problem-based learning: A review of the literature on its outcomes and implementation issues. Academic Medicine. 68(1), 52-81.
Albanese, M. (2000) Problem-based learning: why curricula are likely to show little effect on knowledge and clinical skills.http://www3.interscience.wiley.com/journal/119185510/abstract?CRETRY=1&SRETRY=0


Aspy, D.N., Aspy, C. B., & Quimby, P.M. (1993). What doctors can teach teachers about problem-based learning. Educational Leadership, 50(7), 22-24.
Aspy, D.N., Aspy, C. B., & Quimby, P.M. (1993). What doctors can teach teachers about problem-based learning. Educational Leadership, 50(7), 22-24.
Azer SA (2001) Problem-based learning. A critical review of its educational objectives and the rationale for its use. Saudi medical journal


Barrows, H.S. (1985). How to Design a Problem-based Curriculum for the Preclinical Years. New-York : Springer
Barrows, H.S. (1985). How to Design a Problem-based Curriculum for the Preclinical Years. New-York : Springer
Line 482: Line 310:


Bridges, E. M., & Hallinger, P. (1991, September). Problem-based learning in medical and managerial education. Paper presented for the Cognition and School Leadership Conference of the National Center for Educational Leadership and the Ontario Institute for Studies in Education, Nashville, TN.
Bridges, E. M., & Hallinger, P. (1991, September). Problem-based learning in medical and managerial education. Paper presented for the Cognition and School Leadership Conference of the National Center for Educational Leadership and the Ontario Institute for Studies in Education, Nashville, TN.
Bridges, E. M., & Hallinger, P. (2006) Problem-based learning in leadership education. Teaching & learning [0887-9486]  Année:2006 volume:1996 numéro:68 page:53


Delafuente, J. C., Munyer, T. O., Angaran, D. M., & Doering, P. L. (1994). A problem solving active learning course in pharmacotherapy. American Journal of Pharmaceutical Education. 58(1), 61-64.
Delafuente, J. C., Munyer, T. O., Angaran, D. M., & Doering, P. L. (1994). A problem solving active learning course in pharmacotherapy. American Journal of Pharmaceutical Education. 58(1), 61-64.
Line 490: Line 320:


Farnsworth, C. C. (1994). Using computer simulations in problem-based learning. In M. Orey (Ed.), Proceedings of the Thirty-fifth ADCIS Conference (pp. 137-140). Nashville, TN: Omni Press.
Farnsworth, C. C. (1994). Using computer simulations in problem-based learning. In M. Orey (Ed.), Proceedings of the Thirty-fifth ADCIS Conference (pp. 137-140). Nashville, TN: Omni Press.
Finkle, S.L. y Torp, L.L., “Introductory Documents”, Illinois Math and Science Academy, 1995.


Foley, R. P., Levy, J., Russinof, H. J., & Lemon, M. R. (1993 ). Planning and implementing a problem-based learning rotation for residents. Teaching and Learning in Medicine, 5(2), 102-106.
Foley, R. P., Levy, J., Russinof, H. J., & Lemon, M. R. (1993 ). Planning and implementing a problem-based learning rotation for residents. Teaching and Learning in Medicine, 5(2), 102-106.


Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly. 36(4), 195-200.
Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly. 36(4), 195-200.
García-Famoso (2005). Problem-based learning: a case study in computer science, m-ICTE 2005. [http://www.formatex.org/micte2005/196.pdf PDF], retrieved oct 2007.


Greening T. (1998). “Scaffolding for success in PBL”. Medical Education Online. Vol III.
Greening T. (1998). “Scaffolding for success in PBL”. Medical Education Online. Vol III.
Line 499: Line 333:
Harden, R. M.  & Margery H. Davis, (1998) The continuum of problem-based learning, ''Medical Teacher'', Vol. 20, No. 4.  
Harden, R. M.  & Margery H. Davis, (1998) The continuum of problem-based learning, ''Medical Teacher'', Vol. 20, No. 4.  


http://edweb.sdsu.edu/clrit/learningresource/PBL/WhatisPBL.html
Kolodner, Janet, L. Paul J. Camp, David Crismond, Barbara Fasse, Jackie Gray, Jennifer Holbrook, Sadhana Puntambekar, Mike Ryan (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design(tm) Into Practice Journal of the Learning Sciences, Vol. 12, No. 4: pages 495-547 Abstract/PDF (Access restricted)
 
http://sll.stanford.edu/pubs/jeepark/pblsite


Mandin, H., Harasym, P., & Watanabe, M. (1995). Developing a "clinical presentation" curriculum at the University of Calgary. Academic Medicine, 70(3), 186-193.
Mandin, H., Harasym, P., & Watanabe, M. (1995). Developing a "clinical presentation" curriculum at the University of Calgary. Academic Medicine, 70(3), 186-193.
Line 508: Line 340:


Mennin, S. P., Friedman, M, Skipper, B, Kalishman, S., & Snyder, J. (1993). Performances on the NBME I, II, and III by medical students in the problem-based learning and conventional tracks at the University of New Mexico. Academic Medicine, 68(8), 616-624.
Mennin, S. P., Friedman, M, Skipper, B, Kalishman, S., & Snyder, J. (1993). Performances on the NBME I, II, and III by medical students in the problem-based learning and conventional tracks at the University of New Mexico. Academic Medicine, 68(8), 616-624.
Jeroen J.G. van Merriënboer, Perspectives on problem solving and instruction, Computers & Education, Volume 64, May 2013, Pages 153-160, ISSN 0360-1315, http://dx.doi.org/10.1016/j.compedu.2012.11.025.
(http://www.sciencedirect.com/science/article/pii/S0360131512002989)


Ostwald, M. J., Chen, S. E., Varnam, B., & McGeorge, W. D. (1992, November). The application of problem-based learning to distance education. Paper presented at the world conference of the International Council for Distance Education, Bangkok, Thailand.
Ostwald, M. J., Chen, S. E., Varnam, B., & McGeorge, W. D. (1992, November). The application of problem-based learning to distance education. Paper presented at the world conference of the International Council for Distance Education, Bangkok, Thailand.


Pincus, K. V. (1995). Introductory Accounting: Changing the First Course. New Directions for Teaching and Learning, 61, 88-98.
Pincus, K. V. (1995). Introductory Accounting: Changing the First Course. New Directions for Teaching and Learning, 61, 88-98.
Problem Based Learning Initiative at Southern Illinois Institute : http://www.pbli.org/pbl/pbl1.htm
Problem Based Learning: http://www.mcli.dist.maricopa.edu/pbl/sources.html (46 web and 16 print references)


Rangachari, P. K. (1991). Design of a problem-based undergraduate course in pharmacology: Implications for the teaching of physiology. Advances in Physiology Education. 5(1), S14-S21.
Rangachari, P. K. (1991). Design of a problem-based undergraduate course in pharmacology: Implications for the teaching of physiology. Advances in Physiology Education. 5(1), S14-S21.
Line 524: Line 355:


Savery, John R.  and Thomas M. Duffy, Problem Based Learning: An instructional model and its constructivist framework, In B. Wilson (Ed.). Constructivist Learning Environments: Case Studies in Instructional Design, Educational Technology Publications Englewood Cliffs, NJ. [http://www3.uakron.edu/edfound/people/savery/papers/sav-duff.html HTML]
Savery, John R.  and Thomas M. Duffy, Problem Based Learning: An instructional model and its constructivist framework, In B. Wilson (Ed.). Constructivist Learning Environments: Case Studies in Instructional Design, Educational Technology Publications Englewood Cliffs, NJ. [http://www3.uakron.edu/edfound/people/savery/papers/sav-duff.html HTML]
Savery John R. (2006), Overview of Problem-based Learning: Definitions and Distinctions, ''The Interdisciplinary Journal of Problem-based Learning (IJPBL)'', 1 (1). [http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1002&context=ijpbl PDF] (open access).
Savin-Baden, Maggi (2008). A Practical Guide to Problem-based Learning Online (Gebundene Ausgabe), Routlege, ISBN 0415437873 (hardcover), ISBN 0415437881 (paperback)
Scherly, Daniel (1997). Apprentissage par problèmes (APP) et les nouvelles technologies d'enseignement. Travail de séminaire, TECFA, [http://tecfa.unige.ch/~scherly/APP/APP.html HTML]


Schmidt, H. G., Henny, P. A., & de Vries, M. (1992). Comparing problem-based with conventional education: A review of the University of Limburg medical school experiment. Annals of Community-Oriented Education, 5, 193-198.
Schmidt, H. G., Henny, P. A., & de Vries, M. (1992). Comparing problem-based with conventional education: A review of the University of Limburg medical school experiment. Annals of Community-Oriented Education, 5, 193-198.
Line 530: Line 367:


Schmidt H.G. & Moust J.H.C. (1998). Processes that Shape Small-Group Tutorial Learning: A Review of Research. Paper presented at Annual Meeting of the American Educational Research Association.  
Schmidt H.G. & Moust J.H.C. (1998). Processes that Shape Small-Group Tutorial Learning: A Review of Research. Paper presented at Annual Meeting of the American Educational Research Association.  
Schwartz, Peter, Ed.; Mennin, Stewart, Ed.; Webb, Graham, Ed. Problem-Based Learning: (2001) Case Studies, Experience and Practice. Case Studies of Teaching in Higher Education. Book
Song,Hae-Deok, Grabowski,Barbara, Koszalka,Tiffany, Harkness,William, Patterns of Instructional-design Factors Prompting Reflective Thinking in Middle-school and College Level Problem-based Learning Environments, Instructional Science, 34, 1, 1/5/2006, Pages 63-87, [http://dx.doi.org/10.1007/s11251-005-6922-4, DOI 10.1007/s11251-005-6922-4]


Stepien, W.J. and Gallagher, S.A. 1993. "Problem-based Learning: As Authentic as it Gets." Educational Leadership. 50(7) 25-8
Stepien, W.J. and Gallagher, S.A. 1993. "Problem-based Learning: As Authentic as it Gets." Educational Leadership. 50(7) 25-8
Uden, Lorna and Chris Beaumont (2005). Technology and Problem-Based Learning, Information Science Publishing, ISBN 1591407443
Van Berkel (2006) problem-based learning: The influence of tutoring competencies on problems, group functioning and student achievement in problem-based learning. Medical education


Vernon, D. T. (1995). Attitudes and opinions of faculty tutors about problem-based learning. Academic Medicine, 70(3) 216-223.
Vernon, D. T. (1995). Attitudes and opinions of faculty tutors about problem-based learning. Academic Medicine, 70(3) 216-223.
Line 541: Line 386:
Williams, R., Saarinen-Rahikka, H., & Norman, G. R. (1995). Self-Directed learning in problem-based health science education. Academic Medicine, 70(2), 161-163.
Williams, R., Saarinen-Rahikka, H., & Norman, G. R. (1995). Self-Directed learning in problem-based health science education. Academic Medicine, 70(2), 161-163.


Woloschuk, Wayne (2000) Use of scheme-based problem solving: an evaluation of the implementation and utilization of schemes in a clinical presentation curriculum Medical Education, Volume 34, Number 6, June 2000 , pp. 437-442(6)
Wood, D. F. (2003). A. B. C.'s of learning and teaching in medicine: Problem-based learning. British Medical Journal, 326.


[[Category:Instructional design models]]
[[Category:Instructional design models]]

Latest revision as of 15:43, 21 March 2014

Introduction

Problem-based learning (PBL in this article) is defined by Finkle and Torp (1995) as, “a curriculum development and instructional system that simultaneously develops both problem solving strategies and disciplinary knowledge bases and skills by placing students in the active role of problem solvers confronted with an ill-structured problem that mirrors real-world problems”.

What is PBL?

Problem-based learning is an instructional design model and a variant of project-oriented learning. It is closely related to inquiry-based learning.

Real-life problems seldom parallel well-structured problems; hence, the ability to solve traditional school-based problems does little to increase relevant, critical thinking skills. Real-life problems present an ever-changing variety of goals, contexts, contents, obstacles, and unknowns which influence how each problem should be approached. To be successful, students need to practice solving ill-structured problems that reflect life beyond the classroom. These skills are the goal of PBL. With Problem-Based Learning, students engage in authentic experiences.

PBL is inherently social and collaborative in methodology and teaches students essential "soft skills" as well as domain specific content and skills. PBL is learner-centered and gives the learners progressively more responsibility and independence in their education. It encourages life-long learning. In PBL, it is the problem that drives the curriculum. It does not test a skill, it assists in the development of the skill itself. There is no one solution: the problem is solved in an iterative process where the perception of the problem can change as do the solutions found.

What Skills do Students learn?

Through PBL, students learn:

  • Solving real-life problems: Learning to solve relevant and contextual problems congruent with workplace skills, develop initiative, performance ability and enthusiasm.
  • Efficient problem solving: Develop the ability to find and use appropriate resources for problem solving
  • Independant learning: Employ effective self-directed and self-motivated learning skills and proactive thinking to continue learning as a lifetime habit
  • Self-monitoring: Continuously monitor and assess the adequacy of their own knowledge and of their problem-solving skills, practice critical thinking (see also cognitive tools)
  • Team work: Efficient collaboration as a member of a group, communication and leadership skills, social and ethical skills.

From the problem based learning initiative of the southern illinois university and the Stanford site on PBL

Historical Background

Problem-Based Learning (PBL) has become popular because of its benefits to student learning.

PBL can be thought of as a combination of cognitive and social constructivist theories, as developed by Piaget and Vygotsky, respectively. The first application of PBL was in medical schools which rigorously test the knowledge base of graduates. According to García-Famoso (2005), “PBL was first applied in the 60s, in the Faculty of Health Sciences of McMaster University (Canada) and in the School of Medicine of Case Western Reserve University (United States). The main objective was twofold: to develop problem solving skills and bring learning closer to real medical problems.” After these first experiences, many medical and professional schools started to use some form of PBL, for example, Harvard Medical School or, in Europe, Maastrich University. Many medical and professional schools, as well as undergraduate and graduate programs, use PBL in some form. Over 80% of medical schools use the PBL methodology to teach students about clinical cases, either real or hypothetical (Vernon & Blake, 1993, Bridges & Hallinger, 1991).

Models of PBL, Designing PBL curricula

Models of PBL

There are many problem-based learning models. E.g. Edwin Bridges (1992) suggests that there are two versions of PBL that have been implemented in the classroom, problem-stimulated PBL and Student Centered PBL.

Problem Stimulated PBL (PS PBL)

PS PBL uses role relevant problems in order to introduce and learn new knowledge.

PS PBL emphasizes 3 major goals:

  • development of domain-specific skills
  • development of problem-solving skills
  • acquisition of domain-specific knowledge

Student Centered PBL (SC PBL)

SC PBL has the same goals as PS PBL, but includes one more: fostering life-long learning skills. Physicians are one group of professionals who are required to stay current with new developments in their fields. The skills of a life-long learner are particularly important for this group. Hence, several medical schools employ student centered PBL.

The major differences with PS PBL are in student responsibilities. In SC PBL:

  • students themselves identify the learning issues they wish to explore
  • students determine the content to be mastered
  • students determine and locate the resources to be used

In short, students have self-defined learning issues. As is the case with PS PBL, students decide how to appropriately use the newly acquired information and knowledge in order to solve the problem at hand.

Case-based PBL See learning by design. The typical sequence of activities in a Learning-by-Design unit has students encountering a design challenge and attempting a solution using only prior knowledge. Students compare and contrast their ideas, identify what they need to learn to move forward in addressing the design challenge, choose a learning issue to focus on, and design and/or run a laboratory activity to examine that issue. Following this are cycles of exploratory and experimental work.Kolodner, Crismond, Gray, Holbrook & Puntembakar (1998)

Designing PBL

Integrating PBL into a Curriculum

Design Considerations:

  • How should PBL be incorporated into the curriculum?
  • What problems should be used and how should they be presented?
  • What are the instructional goals?
  • How should small groups be formed?
  • How much should each problem be prestructured?
  • How to evaluate the program and the students?
  • What resources should be available?
  • How to prepare students and faculty for PBL? (Bridges, 1992).

Creating appropriate Problems

PBL problems should be created with :

  • introduction
  • content
  • learning objectives
  • resources
  • expected outcome
  • guiding questions
  • assessment exercises
  • time frame

(Bridges, 1992)

The best format for problems is unorganized, unsynthesized, and open-ended because this allows for student processing. Students are motivated to use their reasoning skills and relate the content to their own context and previous knowledge. Focus problems on current events, student lives, or relationships to actual occurrences. Problems should be interdisciplinar and task oriented. It should not only focus on the large problem but also take students through the objectives. (Albanese & Mitchell, 1993)

Novice learners require more structure and cues while more experienced students are self-directed learners. Software can be used in the PBL curriculum, but avoid telling students when the solution is reached. This stops the learning process. Point out inappropriate strategies. Complex problems usually require learners to exhibit management, research, and thinking skills that help distinguish less expert from more expert performers. This differentiation can help serve as a grading standards in the class.(Albanese & Mitchell, 1993)

Getting Started

  • Anticipate and manage anxiety (Bernstein, Tipping, Bercovitz, & Skinner, 1995).
  • Explain to all involved what is happening and why.
  • Tutors should receive training (Foley, Levy, Russinof, & Lemon, 1993).
  • Students should be oriented to PBL.
  • State the PBL goals.
  • Randomly assign students to PBL (Mennin Friedman, Skipper, Kalishman, & Snyder, 1993).

According to Schmidt and Moust (1989), the student progresses through a series of steps, "The Seven Jump", during the PBL process.

  1. Clarify unknown terms and concepts in the problem description.
  2. Define the problem(s). List the phenomena or events to be explained.
  3. Analyze the problem(s). Step 1. Brainstorm. Try to produce as many different explanations for the phenomena as you think of. Use prior knowledge and common sense. Student outcomes: activation of prior knowledge, elaboration, restructuring of information, organization of information, intrinsic motivation (see also Flow theory, Motivation).
  4. Analyze the problem(s). Step 2. Discuss. Criticize the explanations proposed and try to produce a coherent description of the processes that, according to what you think, underlie the phenomena or events.
  5. Formulate learning issues for self-directed learning.
  6. Fill in gaps in your knowledge through self-study.
  7. Share your findings with your group and try to integrate the knowledge acquired into a comprehensive explanation for the phenomena or events. Check whether you know enough now. Student outcomes: restructuring, applying, problem solving.

Evaluation

Because instruction and learning is different in problem based settings than traditional instruction, many instructors find student evaluation difficult.

PBL encourages development of meta-cognitive skills like group learning or research and communication skills and aims transferring knowledge to novel situations. With such multiple purposes for PBL, it is important to consider a variety of evaluation techniques:

  • Written examinations: should be designed to ensure transference of skills to similar problems or subject domains.
  • Practical examinations: used to ensure that students are able to apply skills learned during the course.
  • Concept maps: much of the learning that goes on during PBL is more than just a compilation of facts. As such, written examinations may not be an adequate measure of student growth. Requiring students to generate concept maps, in which they depict their knowledge through the creation of identified nodes and links, may present another option to determine their cognitive growth.
  • Peer assessment: because life outside the classroom usually requires working with others, peer assessment is a viable option to measure student growth. Providing students with an evaluation rubric often helps guide the peer evaluation process. This process also emphasizes the cooperative nature of the PBL environment.
  • Self assessment: an important element of PBL is to help students identify gaps in their knowledge base in order for more meaningful learning to result. Self assessment allows students to think more carefully about what they know, what they do not know, and what they need to know to accomplish certain tasks.
  • Facilitators/tutor assessment: the feedback provided by tutors should encourage the students to explore different ideas. It is important that facilitators do not dominate the group and facilitate learning and exploration. Tutor assessment may consist of how successful individuals interacted with their group and their cognitive growth.
  • Oral Presentations: because so much of work life revolves around presenting ideas and results to peers, oral presentation in PBL provide students an opportunity to practice their communication skills. Presenting findings to their group, the class, or even a real-life audience can help strengthen these skills.
  • Reports: Written communication is another skill important for students. Requiring written reports allows students to practice this form of communication.

Evaluation is an iterative process. Be prepared to make changes along the way based on experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995).

Ressources

Ensure resources and time are available for self-study. "If students are to be genuinely empowered with their own learning, it is important to provide them with the necessary infrastructure." (Rangagachari, 1991). PBL students study in the library more than conventional students and study more during the day than the evening. Increasing the time spent instructing students decreases the time students spend in self-study (Williams, Saarinen-Rahikka, & Norman, 1995). If students must learn basic science or similar material for national standardized examinations, increase student access to self-assessment, provide practice examinations, allow additional examination preparation time (Mennin et al., 1993).

See also Problem-based learning and electronic games

Roles in PBL

Instructor's Role

Teaching in PBL normally occurs within small discussion groups of students facilitated by a faculty tutor (Aspy, Aspy, & Quimby, 1993, Bridges & Hallinger, 1991, Mayo, Donnelly, Nash, & Schwartz, 1993). Because the amount of direct instruction is reduced in PBL, students assume greater responsibility for their own learning. The instructor's role becomes one of subject matter expert, resource guide, and task group consultant. This arrangement promotes group processing of information rather than an imparting of information by faculty (Vernon & Blake, 1993). The tutor is most active in planning the PBL, the content and sequence of projects. He encourages student participation, provides appropriate information to keep students on track, gives immediate and appropriate feedback, and assumes the role of mentor, tutor or fellow learner (Aspy et al., 1993). The tutor acts as metacognitive coach, serving as model, thinking aloud with students and practicing behavior he wants his students to use (Stepien and Gallagher, 1993. He also evaluates the students.

Student's Role

The individual student in PBL

In PBL, students have responsibility for their own learning by identifying their learning issues and needs.

The students work with the following learning materials:

  • the problem situation
  • a list of objectives that the student is expected to master while working on the problem
  • a reference list of materials that pertain to the basic objectives
  • questions that focus on important concepts and applications of the knowledge base.

Time allotted to each project is fixed. Students work on the problem in project teams. Students are evaluated in multiple ways by instructors, peers, and self, using questionnaires, interviews, observation, and other assessment methods.

Groups in PBL

Students work in teams to complete the project, resolve the problem, and accomplish the learning objectives.

Groups usually consist of 5 to 7 students. Four roles are possible:

  • project leader - proposes meeting agendas, suggests division of labor, and develops the overall project plan.
  • facilitator - describes the process to be followed during the steps of the project plan, determines appropriate time to proceed in plan, and suggests adjustments to the plan as needed.
  • recorder - takes group notes of each meeting.
  • team member - takes individual notes, participates in discussion, and reviews resource materials.

Some PBL models include a mentor or tutor in the group (often a faculty member, or another student).

The team schedules its own activities and decides how to use the allotted time

See also Problem-based learning and social software

Discussion

Application of PBL: Advantages, Disadvantages

Advantages

Why is there an increase in scores resulting in PBL? Information theory links 3 conditions to subsequent improved retrieval and use. Bridges & Hallinger (1991) report that students improve their comprehension because they:

  1. are better at activating prior knowledge,
  2. learn in a setting resembling their future context, and
  3. elaborate more fully on the information presented.

Increased elaboration promotes mental processing, understanding, and recall. Because content is learned in context, definitions, information, theories, correlations, and principles are learned and integrated with one another (Mandin, Harasym, & Watanabe, 1995).

See also the learning level article.

The Buck Institute fro Education (BIE) sees PBL as a mean of developping what they call 21st century skills, meaning

  • ICT literacy
  • cognitive skills like critical thinking, creativeness
  • Interpersonal skills
  • Self- and task-managment skills
  • personal charcteristics like ethical sensibility, civic responsibility, accountability

Disadvantages

Introducing PBL means

  • changing the Curriculum
  • introducing higher costs
  • higher time demands: PBL takes more time to teach the same content
  • change of roles: Students have to change attitude and go from memorization of facts to an active searching for information(Reithlingshoefer, 1992). Teachers have to shift from dissemination of information to a tutor's and guide role.
  • formulation of appropriate problems that encompass both a large goal and specific objectives
  • setting up appropriate assessment
  • facing a lack of extrinsic rewards for PBL teaching

Is PBL better?

When determining the value of PBL curriculum, the literature has focused on 4 components :

  • Attitudes: Students enrolled in PBL courses appear to have a more favorable attitude toward their course than students schooled in traditional instruction. Improved attitudes contribute to a variety of factors including increased course enrollment, enhanced interest in major course of study, and positive feedback from faculty and employers (Pincus, 1995); a reduced dropout rate (Bridges & Hallinger, 1991; Pincus, 1995); and an increase in student comments concerning the advantages of PBL after their learning experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995). Schmidt, Henny, and de Vries (1992) conclude that "problem based curricula do appear to provide a friendlier and more inviting educational climate."
  • Basic knowledge: Test results seem split on basic knowledge comprehension. In the medical field, although it was sometimes found that students schooled with PBL performed worse on standardized tests, they performed better on clinical tests and equal on essay tests to conventionally-schooled students (Albanese, 1993). Not all studies are favorable to PBL, but Albanese found that PBL knowledge is more deeply ingrained and less likely to be forgotten.
  • Problem solving ability: Reasoning and problem solving skills: The evidence appears supportive in finding PBL students better than conventional students in analyzing atypical medical cases (Albanese, 1993), and in having stronger problem solving skills (Gallagher, Stepien, & Rosenthal, 1992).
  • Study habits: Team work Most PBL is done in small groups. Therefore it is not surprising to find that students who learn in this context tend to be more oriented toward collaborative learning.

Examples and links

Examples

  • Examples of PBL from the Stanford Learning Laboratory.(find examples of PBL at university Level, in biology, environmental sciences, high School level, economics, environmental sciences, history, ancient worlds and english).
University level

Sherman Rosenfeld and Yehuda Ben-Hur, PBL in Science and Technology: A Case Study of Professional Development, Department of Science Teaching, Wizmann Institute of Science

High School Level
Commercial PBL example cases

Various links

  • Problem-Based Learning comprehensive site of the Illinois maths and science academy with description of pbl, rersources, examples and more.
  • Problem-based learning pages in the archives of the center for teaching, learning and scholarship from the samford university, alabama, previously center for problem-based learning
  • PBL pages of the maricopa center for learning and instruction MCLI, arizona with a searchable archive.

Journals:

References

Albanese, M., & Mitchell, S. (1993). Problem-based learning: A review of the literature on its outcomes and implementation issues. Academic Medicine. 68(1), 52-81.

Albanese, M. (2000) Problem-based learning: why curricula are likely to show little effect on knowledge and clinical skills.http://www3.interscience.wiley.com/journal/119185510/abstract?CRETRY=1&SRETRY=0

Aspy, D.N., Aspy, C. B., & Quimby, P.M. (1993). What doctors can teach teachers about problem-based learning. Educational Leadership, 50(7), 22-24.

Azer SA (2001) Problem-based learning. A critical review of its educational objectives and the rationale for its use. Saudi medical journal

Barrows, H.S. (1985). How to Design a Problem-based Curriculum for the Preclinical Years. New-York : Springer

Bernstein, P., Tipping, J., Bercovitz, K., & Skinner, H.A. (1995). Shifting students and faculty to a PBL curriculum: Attitudes changed and lessons learned. Academic Medicine, 70(3), 245-247.

Blumberg, P., Solomon, P., & Shehata, A. (1994, April). Age as a contextual cue in problem-based learning. Paper presented at the meeting of the American Educational Research Association, New Orleans, LA.

Bridges, E. M. (1992). Problem based learning for administrators. Eugene, OR: ERIC Clearinghouse on Educational Management. (ERIC Document Reproduction Service No. ED 347 617)

Bridges, E. M., & Hallinger, P. (1991, September). Problem-based learning in medical and managerial education. Paper presented for the Cognition and School Leadership Conference of the National Center for Educational Leadership and the Ontario Institute for Studies in Education, Nashville, TN.

Bridges, E. M., & Hallinger, P. (2006) Problem-based learning in leadership education. Teaching & learning [0887-9486] Année:2006 volume:1996 numéro:68 page:53

Delafuente, J. C., Munyer, T. O., Angaran, D. M., & Doering, P. L. (1994). A problem solving active learning course in pharmacotherapy. American Journal of Pharmaceutical Education. 58(1), 61-64.

Dolmans, D. H., Gijselaers, W. H. & Schmidt, H. G. (1992, April). Do students learn what their teachers intend they learn? Guiding processes in problem-based learning. Paper presented at the meeting of the American Educational Research Association, San Francisco, CA.

Engel, C. (Ed.). (1992). Annals of Community-Oriented Education Volume 5. Network Community-Oriented Educational Institutions for Health Sciences. (pp. 193-198). Maastricht, The Netherlands: University of Limburg.

Farnsworth, C. C. (1994). Using computer simulations in problem-based learning. In M. Orey (Ed.), Proceedings of the Thirty-fifth ADCIS Conference (pp. 137-140). Nashville, TN: Omni Press.

Finkle, S.L. y Torp, L.L., “Introductory Documents”, Illinois Math and Science Academy, 1995.

Foley, R. P., Levy, J., Russinof, H. J., & Lemon, M. R. (1993 ). Planning and implementing a problem-based learning rotation for residents. Teaching and Learning in Medicine, 5(2), 102-106.

Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly. 36(4), 195-200.

García-Famoso (2005). Problem-based learning: a case study in computer science, m-ICTE 2005. PDF, retrieved oct 2007.

Greening T. (1998). “Scaffolding for success in PBL”. Medical Education Online. Vol III.

Harden, R. M. & Margery H. Davis, (1998) The continuum of problem-based learning, Medical Teacher, Vol. 20, No. 4.

Kolodner, Janet, L. Paul J. Camp, David Crismond, Barbara Fasse, Jackie Gray, Jennifer Holbrook, Sadhana Puntambekar, Mike Ryan (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design(tm) Into Practice Journal of the Learning Sciences, Vol. 12, No. 4: pages 495-547 Abstract/PDF (Access restricted)

Mandin, H., Harasym, P., & Watanabe, M. (1995). Developing a "clinical presentation" curriculum at the University of Calgary. Academic Medicine, 70(3), 186-193.

Mayo, P., Donnelly, M. B., Nash, P. P., & Schwartz, R. W. (1993). Student Perceptions of Tutor Effectiveness in problem based surgery clerkship. Teaching and Learning in Medicine. 5(4), 227-233.

Mennin, S. P., Friedman, M, Skipper, B, Kalishman, S., & Snyder, J. (1993). Performances on the NBME I, II, and III by medical students in the problem-based learning and conventional tracks at the University of New Mexico. Academic Medicine, 68(8), 616-624.

Jeroen J.G. van Merriënboer, Perspectives on problem solving and instruction, Computers & Education, Volume 64, May 2013, Pages 153-160, ISSN 0360-1315, http://dx.doi.org/10.1016/j.compedu.2012.11.025. (http://www.sciencedirect.com/science/article/pii/S0360131512002989)

Ostwald, M. J., Chen, S. E., Varnam, B., & McGeorge, W. D. (1992, November). The application of problem-based learning to distance education. Paper presented at the world conference of the International Council for Distance Education, Bangkok, Thailand.

Pincus, K. V. (1995). Introductory Accounting: Changing the First Course. New Directions for Teaching and Learning, 61, 88-98.

Rangachari, P. K. (1991). Design of a problem-based undergraduate course in pharmacology: Implications for the teaching of physiology. Advances in Physiology Education. 5(1), S14-S21.

Reithlingshoefer, S. J. (Ed.), (1992). The future of Nontraditional/Interdisciplinary Programs: Margin or mainstream? Selected Papers from the Tenth Annual Conference on Nontraditional and Interdisciplinary Programs, Virginia Beach, VA, 1-763.

Savery, J. R., and Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational Technology, 35, 31-38. Reviewed by Chuck Ferguson

Savery, John R. and Thomas M. Duffy, Problem Based Learning: An instructional model and its constructivist framework, In B. Wilson (Ed.). Constructivist Learning Environments: Case Studies in Instructional Design, Educational Technology Publications Englewood Cliffs, NJ. HTML

Savery John R. (2006), Overview of Problem-based Learning: Definitions and Distinctions, The Interdisciplinary Journal of Problem-based Learning (IJPBL), 1 (1). PDF (open access).

Savin-Baden, Maggi (2008). A Practical Guide to Problem-based Learning Online (Gebundene Ausgabe), Routlege, ISBN 0415437873 (hardcover), ISBN 0415437881 (paperback)

Scherly, Daniel (1997). Apprentissage par problèmes (APP) et les nouvelles technologies d'enseignement. Travail de séminaire, TECFA, HTML

Schmidt, H. G., Henny, P. A., & de Vries, M. (1992). Comparing problem-based with conventional education: A review of the University of Limburg medical school experiment. Annals of Community-Oriented Education, 5, 193-198.

Schmidt, H. G., Van Der Arand, A., Moust, J. H., Kokx, I., & Boon, L. (1993). Influence of tutors' subject matter expertise on student effort and achievement in problem-based learning. Academic Medicine, 68(10), 784-791.

Schmidt H.G. & Moust J.H.C. (1998). Processes that Shape Small-Group Tutorial Learning: A Review of Research. Paper presented at Annual Meeting of the American Educational Research Association.

Schwartz, Peter, Ed.; Mennin, Stewart, Ed.; Webb, Graham, Ed. Problem-Based Learning: (2001) Case Studies, Experience and Practice. Case Studies of Teaching in Higher Education. Book

Song,Hae-Deok, Grabowski,Barbara, Koszalka,Tiffany, Harkness,William, Patterns of Instructional-design Factors Prompting Reflective Thinking in Middle-school and College Level Problem-based Learning Environments, Instructional Science, 34, 1, 1/5/2006, Pages 63-87, DOI 10.1007/s11251-005-6922-4

Stepien, W.J. and Gallagher, S.A. 1993. "Problem-based Learning: As Authentic as it Gets." Educational Leadership. 50(7) 25-8

Uden, Lorna and Chris Beaumont (2005). Technology and Problem-Based Learning, Information Science Publishing, ISBN 1591407443

Van Berkel (2006) problem-based learning: The influence of tutoring competencies on problems, group functioning and student achievement in problem-based learning. Medical education

Vernon, D. T. (1995). Attitudes and opinions of faculty tutors about problem-based learning. Academic Medicine, 70(3) 216-223.

Vernon, D. T., & Blake, R. L. (1993). Does problem-based learning work? A meta-analysis of evaluative research. Academic Medicine, 68(7) 550-563.

Wilkinson, T.W., & Sherman, T.M. (1991). Telecommunications-based distance education: Who's doing what? Educational Technology, 31(11), 54-59.

Williams, R., Saarinen-Rahikka, H., & Norman, G. R. (1995). Self-Directed learning in problem-based health science education. Academic Medicine, 70(2), 161-163.


Woloschuk, Wayne (2000) Use of scheme-based problem solving: an evaluation of the implementation and utilization of schemes in a clinical presentation curriculum Medical Education, Volume 34, Number 6, June 2000 , pp. 437-442(6)


Wood, D. F. (2003). A. B. C.'s of learning and teaching in medicine: Problem-based learning. British Medical Journal, 326.