Problem-based learning: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(148 intermediate revisions by 5 users not shown)
Line 1: Line 1:
Source principale : http://sll.stanford.edu/pubs/jeepark/pblsite
{{incomplete}}
==Introduction==
 
'''Problem-based learning''' (PBL in this article) is defined by Finkle and Torp (1995) as, {{quotation |a curriculum development and instructional system that simultaneously develops both problem solving strategies and disciplinary knowledge bases and skills by placing students in the active role of problem solvers confronted with an ill-structured problem that mirrors real-world problems}}.


==Introduction==
=== What is PBL? ===
 
Problem-based learning is an [[instructional design model]] and a variant of [[project-oriented learning]]. It is closely related to [[inquiry-based learning]].
 
Real-life problems seldom parallel well-structured problems; hence, the ability to solve traditional school-based problems does little to increase relevant, critical thinking skills. Real-life problems present an ever-changing variety of goals, contexts, contents, obstacles, and unknowns which influence how each problem should be approached. To be successful, students need to practice solving ill-structured problems that reflect life beyond the classroom. These skills are the goal of PBL. With Problem-Based Learning, students engage in authentic experiences.


Problem-based Learning (PBL) has become popular because of its apparent benefits to student learning. Students engage in authentic experiences which require them to have and access all three forms of knowledge. PBL's are inherently social and collaborative in methodology and teach students essential "soft skills" as well as domain specific content and skills. Through PBL, students learn:
PBL is inherently social and collaborative in methodology and teaches students essential "soft skills" as well as domain specific content and skills. PBL is learner-centered and gives the learners progressively more responsibility and independence in their education. It encourages life-long learning.
* Problem-solving skills
In PBL, it is the problem that drives the curriculum. It does not test a skill, it assists in the development of the skill itself. There is no one solution: the problem is solved in an iterative process where the perception of the problem can change as do the solutions found.
* Self-directed learning skills
* Ability to find and use appropriate resources
* Critical thinking
* Measurable knowledge base
* Performance ability
* Social and ethical skills
* Self-sufficient and self-motivated
* Facility with computer
* Leadership skills
* Ability to work on a team
* Communication skills
* Proactive thinking
* Congruence with workplace skills


==What is PBL?==
=== What Skills do Students learn? ===


===A Little Historical Background===
Through PBL, students learn:


Problem-Based Learning (PBL) can be thought of as a combination of cognitive and social constructivist theories, as developed by Piaget and Vygotsky, respectively.
*'''Solving real-life problems:''' Learning to solve relevant and contextual problems congruent with workplace skills, develop initiative, performance ability and enthusiasm.
PBL is a curriculum development and delivery system that recognizes the need to develop problem solving skills as well as the necessity of helping students to acquire necessary knowledge and skills.
The first application of PBL, and perhaps the most strict and pure form of PBL, was in medical schools which rigorously test the knowledge base of graduates. Medical professionals need to keep up with new information in their field, and the skill of life-long learning is particularly important for them. Hence, PBL was thought to be well suited for this area.
Many medical and professional schools, as well as undergraduate and graduate programs use PBL in some form, at varying capacities internationally. (see Schools that practice PBL).
There are several organizations that provide support for teachers and students of PBL and others that research PBL and related topics. More information about these organizations can be found in Resources, PBL Organizations, and Ways to learn PBL methods.


===Overview and Characteristics===
*'''Efficient problem solving:''' Develop the ability to find and use appropriate resources for problem solving


# Use of real world problems - problems are relevant and contextual. It is in the process of struggling with actual problems that students learn content and critical thinking skills.
*'''Independant learning:''' Employ effective self-directed and self-motivated learning skills and proactive thinking to continue learning as a lifetime habit
# Reliance on problems to drive the curriculum - the problems do not test skills; they assist in development of the skills themselves.
# The problems are truly ill-structured - there is not meant to be one solution, and as new information is gathered in a reiterative process, perception of the problem, and thus the solution, changes.
# PBL is learner-centered - learners are progressively given more responsibility for their education and become increasingly independent of the teacher for their education.
# PBL produces independent, life-long learners - students continue to learn on their own in life and in their careers.


(1-3 Adapted from Stepien & Gallagher 1993; Barrows, 1985 // 4 & 5 : From [http://www.pbli.org/pbl/pbl1.htm Problem Based Learning Initiative])
*'''Self-monitoring:''' Continuously monitor and assess the adequacy of their own knowledge and of their problem-solving skills, practice critical thinking (see also [[cognitive tools]])
==Versions of PBL==


Edwin Bridges (1992) suggests that there are two versions of PBL that have been implemented in the classroom: Problem Stimulated PBL and Student Centered PBL.
*'''Team work:''' Efficient collaboration as a member of a group, communication and leadership skills, social and ethical skills.  


===Problem Stimulated PBL (PS PBL)===
From the [http://www.pbli.org/core.htm problem based learning initiative] of the southern illinois university and the [http://ldt.stanford.edu/~jeepark/jeepark+portfolio/PBL/skipintro.htm Stanford site on PBL]


PS PBL uses role relevant problems in order to introduce and learn new knowledge. The Prospective Principals Program at Stanford University's School of Education employs PS PBL in its curriculum.
=== Historical Background ===


PS PBL emphasizes 3 major goals:
Problem-Based Learning (PBL) has become popular because of its benefits to student learning.
# development of domain-specific skills
# development of problem-solving skills
# acquisition of domain-specific knowledge


====The PS PBL Process====
PBL can be thought of as a combination of [[Cognitivism|cognitive]] and [[Socio-constructivism|social constructivist]] theories, as developed by Piaget and Vygotsky, respectively.
The first application of PBL was in medical schools which rigorously test the knowledge base of graduates.
According to García-Famoso (2005), {{quotation|PBL was first applied in the 60s, in the Faculty of Health Sciences of McMaster University (Canada) and in the School of Medicine of Case Western Reserve University (United States). The main objective was twofold: to develop problem solving skills and bring learning closer to real medical problems.}}
After these first experiences, many medical and professional schools started to use some form of PBL,
for example, Harvard Medical School or, in Europe, Maastrich University.
Many medical and professional schools, as well as undergraduate and graduate programs, use PBL in some form. Over 80% of medical schools use the PBL methodology to teach students about clinical cases, either real or hypothetical (Vernon & Blake, 1993, Bridges & Hallinger, 1991).


# Students receive the following learning materials:
== Models of PBL, Designing PBL curricula ==
## the problem ;
## a list of objectives that the student is expected to master while working on the problem ;
## a reference list of materials that pertain to the basic objectives ;
## questions that focus on important concepts and applications of the knowledge base.


#Students work in teams to complete the project, resolve the problem, and accomplish the learning objectives.
=== Models of PBL ===
## each student has a particular role in the team - leader, facilitator, recorder, or team member
## time allotted to each project is fixed
## the team schedules its own activities and decides how to use the allotted time


# Student performance is evaluated by instructors, peers, and self using questionnaires, interviews, observation, and other assessment methods.  
There are many problem-based learning models. E.g. Edwin Bridges (1992) suggests that there are two versions of PBL that have been implemented in the classroom, problem-stimulated PBL and Student Centered PBL.


Throughout the process, instructors serve as resources to the teams and provide guidance and direction if the team asks for it or becomes stymied in the project.
'''Problem Stimulated PBL''' (PS PBL)


===Student Centered PBL (SC PBL)===
PS PBL uses role relevant problems in order to introduce and learn new knowledge.


SC PBL is similar to PS PBL in some aspects. SC PBL has the same goals as PS PBL, but includes one more: fostering life-long learning skills. Physicians are one group of professionals who are required to stay current with new developments in their fields. The skills of a life-long learner are particularly important for this group. Hence, several medical schools employ student centered PBL.
PS PBL emphasizes 3 major goals:  
* development of domain-specific skills  
* development of problem-solving skills  
* acquisition of domain-specific knowledge


====The SC PBL Process====
'''Student Centered PBL''' (SC PBL)


# Students receive the problem situation.
SC PBL has the same goals as PS PBL, but includes one more: fostering life-long learning skills. Physicians are one group of professionals who are required to stay current with new developments in their fields. The skills of a life-long learner are particularly important for this group. Hence, several medical schools employ student centered PBL.  
# Students work on the problem in project teams.
# Students are evaluated in multiple ways by instructors, peers, and self.  


The process appears to be similar to that of PS PBL, but there are significant differences in each step, which are driven by the goal of fostering life-long learning skills. The major differences are in student responsbilities. In SC PBL,
The major differences with PS PBL are in student responsibilities.
* students identify the learning issues they wish to explore;
In SC PBL:
* students determine the content to be mastered;
* students themselves identify the learning issues they wish to explore
* students determine and locate the resources to be used.
* students determine the content to be mastered
* students determine and locate the resources to be used  


In short, students have self-defined learning issues.
In short, students have self-defined learning issues.
As is the case with PS PBL, students decide how to appropriately use the newly acquired information and knowledge in order to solve the problem at hand.
As is the case with PS PBL, students decide how to appropriately use the newly acquired information and knowledge in order to solve the problem at hand.


==Why use PBL?==
'''Case-based PBL'''
See [[learning by design]].
The typical sequence of activities in a Learning-by-Design unit has students encountering a design challenge and attempting a solution using only prior knowledge. Students compare and contrast their ideas, identify what they need to learn to move forward in addressing the design challenge, choose a learning issue to focus on, and design and/or run a laboratory activity to examine that issue. Following this are cycles of exploratory and experimental work.Kolodner, Crismond, Gray, Holbrook & Puntembakar (1998)
 
=== Designing PBL ===
 
'''Integrating PBL into a Curriculum'''
 
Design Considerations:
* How should PBL be incorporated into the curriculum?
* What problems should be used and how should they be presented?
* What are the instructional goals?
* How should small groups be formed?
* How much should each problem be prestructured?
* How to evaluate the program and the students?
* What resources should be available?
* How to prepare students and faculty for PBL? (Bridges, 1992).
 
'''Creating appropriate Problems'''


Note : tous les références de ce § sont citées par Bridges 1992 je pense
PBL problems should be created with :  
* introduction
* content
* learning objectives
* resources
* expected outcome
* guiding questions
* assessment exercises
* time frame
(Bridges, 1992)


There are several reasons for using PBL and many of them have resulted from the findings of research (Bridges,1992).
The best format for problems is unorganized, unsynthesized, and open-ended because this allows for student processing. Students are motivated to use their reasoning skills and relate the content to their own context and previous knowledge. Focus problems on current events, student lives, or relationships to actual occurrences. Problems should be interdisciplinar and task oriented. It should not only focus on the large problem but also take students through the objectives. (Albanese & Mitchell, 1993)


# Students retain little of what they learn when taught in a traditional lecture format (Bok 1989).
Novice learners require more structure and cues while more experienced students are self-directed learners. Software can be used in the PBL curriculum, but avoid telling students when the solution is reached. This stops the learning process. Point out inappropriate strategies.
# Students often do not appropriately use the knowledge they have learned (Schmidt 1983).
Complex problems usually require learners to exhibit management, research, and thinking skills that help distinguish less expert from more expert performers. This differentiation can help serve as a grading standards in the class.(Albanese & Mitchell, 1993)
# Since students forget much of what is learned or use their knowledge appropriately, instructors should create conditions that optimize retrieval and appropriate use of the knowledge in future professional practice.
# PBL creates the three conditions that information theory links to subsequent retrieval and appropriate use of new information (Schmidt 1983):
## activation of prior knowledge - students apply knowledge to understand new information.
## similarity of contexts in which information is learned and later applied - research shows that knowledge is much more likely to be remembered or recalled in context in which it was originally learned (Godden and Baddeley 1975). PBL provides problems within context that closely resemble future professional problems.
## opportunity to elaborate on information that is learned during the problem-solving process - elaborations provide redundancy in memory structure, reduces forgetting, and facilitates retrieval. Elaboration occurs in discussion with peers, peer-teaching, exchanging views, and preparing essays about what students have learned during the problem-solving process.  


==Summary of Psychological Basis of PBL==
'''Getting Started'''


Goals and Objectives of PBL Psychological Basis
* Anticipate and manage anxiety (Bernstein, Tipping, Bercovitz, & Skinner, 1995).  
Foster problem-solving skills in students No evidence to date that one curriculum over another enhances students' problem-solving skills independent of acquisition of knowledge.
* Explain to all involved what is happening and why.  
Enhance acquisition, retention, and use of knowledge.
* Tutors should receive training (Foley, Levy, Russinof, & Lemon, 1993).  
Improve integration of basic and clinical sciences. Activation of prior knowledge facilitates the subsequent processing of new information. Small-group discussions can activate relevant prior knowledge.
* Students should be oriented to PBL.  
Elaboration of knowledge at the time of learning enhances subsequent retreival. Discussion, note-taking, answering questions, or using the knowledge to understand a problem are all forms of elaboration.
* State the PBL goals.  
Matching context facilitates recall.
* Randomly assign students to PBL (Mennin Friedman, Skipper, Kalishman, & Snyder, 1993).  
Martensen and colleagues found that students in a PBL course were significantly better at long-term recall than non-PBL students.
Eisenstaedt study showed that immediate knowledge of students in PBL course was lower, but after two years, the difference between the two groups disappeared.
Tans and colleagues study showed PBL induces students to retain knowledge longer than it is retained by students taught under conventional conditions. PBL students process information learned more extensively.
Schmidt and associates found that students who discussed relevant problems recalled significantly more information from text than students who discussed irrelevant problems. This suggests that problem discussion activates prior knowledge which is elaborated upon and used for comprehension of new information.
Transfer of Principles and Concepts Without specific hints, usually less than half the individuals in an experiment recognize the similarity between a new problem situation and one they have just read and recalled.
In order for transfer to occur, people must be processing the information similarly to the way they will process it when they approach a new problem.
Needham and Begg study compared a group who were asked to read and remember a problem and its solution with a group who tried to solve the problem and then given the solution. The two groups were then given problems that illustrated the same problem in contexts different from the original one. The study showed that those who were asked to solve the prototype problem and received feedback about the problem typically transferred the concept to a new problem nearly 90% of the time versus about 60% for those who were simply asked to memorize the problem and the solution. The study suggests that any advance organizer detracts from transfer and that feedback was essential in order for successful transfer.
For successful transfer, it appears that (1) the problem must be approached without much foreknowledge of the domain of the solution or underlying principle; and (2) the problem solver must receive corrective feedback about the solution immediately upon completion.
Integration of basic and clinical knowledge Patel and colleagues studied students in a PBL and conventional curriculum. Students solved a clinical problem and then integrated three passages of relevant basic science knowledge into their explanations of the problem. PBL students offered more explanations and were able to integrate basic science knowledge and clinical knowledge, but many hypotheses were incorrect.  
Boshuizen and Schmidt study compared PBL and conventional curriculum students' ability to explain a specific medical condition and how a specific disease could be related. The notable difference was in the approach students took. PBL students appeared to take an analytical approach, while conventional curriculum students tended toward a more memory-based approach.  
Enhance self-directed learning Blumberg and Michael showed that studetns in a PBL track borrowed more material from the library than students in a conventional curriculum and more PBL students and also acquired more clerkships.
There is not conclusive evidence that shows that PBL produces physicians who are better able to keep up with literature
Enhance intrinsic interest and motivation to learn De Volder and colleagues found that students who discussed a problem seemed more interested in the problem and studying related literature. The study suggests that PBL involves students more extensively in the subject matter.
However, there is no evidence that intrinsic interest in a topic significantly impacts performance related to the topic.  


==What does PBL look like in the classroom?==
According to Schmidt and Moust (1989), the student progresses through a series of steps, "The Seven Jump", during the PBL process.
# Clarify unknown terms and concepts in the problem description.
# Define the problem(s). List the phenomena or events to be explained.
# Analyze the problem(s). Step 1. Brainstorm. Try to produce as many different explanations for the phenomena as you think of. Use prior knowledge and common sense. Student outcomes: activation of prior knowledge, elaboration, restructuring of information, organization of information, intrinsic motivation (see also [[Flow theory]], [[Motivation]]).
# Analyze the problem(s). Step 2. Discuss. Criticize the explanations proposed and try to produce a coherent description of the processes that, according to what you think, underlie the phenomena or events.
# Formulate learning issues for self-directed learning.
# Fill in gaps in your knowledge through self-study.
# Share your findings with your group and try to integrate the knowledge acquired into a comprehensive explanation for the phenomena or events. Check whether you know enough now. Student outcomes: restructuring, applying, problem solving.


There are several models of how PBL works in the classroom. All of them agree that in a PBL curriculum,
'''Evaluation'''
# students work through a series of problems designed to:
* be authentic (i.e. address real-world concerns)
* target defined areas of the curriculum
* be "ill-structured" - they must be defined and analyzed through inquiry from a minimum of presenting information
* approximate the real world, so that students find  themselves actually engaged in the problem and not just observers of it;
# the role of the instructor changes from a "sage on the stage" to a "guide on the side";
# students work collaboratively in small groups toward the problem's resolution.


Barrows (1985) proposes the following model of the PBL process :
Because instruction and learning is different in problem based settings than traditional instruction, many instructors find student evaluation difficult.


Process Purpose
PBL encourages development of meta-cognitive skills like group learning or research and communication skills and aims transferring knowledge to novel situations. With such multiple purposes for PBL, it is important to consider a variety of evaluation techniques:
Students read and address problem, without background preparation. *Teaches students to encode and organize information in useful ways.


*Allows students to find what they know and what they don¹t know. Misconceptions can be corrected in discussion of the problem.  
* Written examinations: should be designed to ensure transference of skills to similar problems or subject domains.
* Practical examinations: used to ensure that students are able to apply skills learned during the course.
* Concept maps: much of the learning that goes on during PBL is more than just a compilation of facts. As such, written examinations may not be an adequate measure of student growth. Requiring students to generate concept maps, in which they depict their knowledge through the creation of identified nodes and links, may present another option to determine their cognitive growth.
* Peer assessment: because life outside the classroom usually requires working with others, peer assessment is a viable option to measure student growth. Providing students with an evaluation rubric often helps guide the peer evaluation process. This process also emphasizes the cooperative nature of the PBL environment.
* Self assessment: an important element of PBL is to help students identify gaps in their knowledge base in order for more meaningful learning to result. Self assessment allows students to think more carefully about what they know, what they do not know, and what they need to know to accomplish certain tasks.
* Facilitators/tutor assessment: the feedback provided by tutors should encourage the students to explore different ideas. It is important that facilitators do not dominate the group and facilitate learning and exploration. Tutor assessment may consist of how successful individuals interacted with their group and their cognitive growth.
* Oral Presentations: because so much of work life revolves around presenting ideas and results to peers, oral presentation in PBL provide students an opportunity to practice their communication skills. Presenting findings to their group, the class, or even a real-life audience can help strengthen these skills.
* Reports: Written communication is another skill important for students. Requiring written reports allows students to practice this form of communication.  


*Mimics the real life context they will face as doctors.  
Evaluation is an iterative process. Be prepared to make changes along the way based on experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995).
Students discuss and analyze problem using prior knowledge and resources available.
Tutor poses questions: ie. Do you need more information? Are you sure of the facts or will a review be helpful? Do you think more information on this area would be helpful?
Tutors encourage hypotheses are grounded in science. *Development of cognitive skills for problem-solving process


*Development of self-monitoring skills to identify the learning needs
'''Ressources'''
*Development of habitual student-initiated questioning
Students decide what they need to know and where they might best find the information. They decide which resources to use (people, published papers, etc.). *Self-directed study
Students revisit problem with new information and knowledge acquired during self-study.
Students critique learning resources used.
Group decides appropriate hypotheses and critiques prior performance. *New organization of information to problem-solve.
*Self-assessment
*Peer-assessment
Students should think about how what they learned has added to their understanding *Reflection
*Self-assessment


Ensure resources and time are available for self-study. "If students are to be genuinely empowered with their own learning, it is important to provide them with the necessary infrastructure." (Rangagachari, 1991). PBL students study in the library more than conventional students and study more during the day than the evening. Increasing the time spent instructing students decreases the time students spend in self-study (Williams, Saarinen-Rahikka, & Norman, 1995).
If students must learn basic science or similar material for national standardized examinations, increase student access to self-assessment, provide practice examinations, allow additional examination preparation time (Mennin et al., 1993).


Schmidt and Moust describe the main frame of the process of PBL as iterative and cyclical in nature.
See also [[Problem-based learning and electronic games]]


# Students approach the problem, without any prior background research.
== Roles in PBL ==
# In the small group tutorial, they analyze the problem based on prior-knowledge, elaborate on the knowledge through discussion, develop new knowledge structures and formulate their own learning objectives.
# Students proceed to a period of self-directed study. This helps them to develop, fine-tune, and restructure the existing knowledge structure.
# Students then return to the small group tutorial, where they integrate and apply the knowledge they gained during self-directed study in order to problem-solve.
Students will then return to the first step and continue to cycle until the problem is fully addressed.


How do groups function in PBL?
=== Instructor's Role ===


Teams are responsible for scheduling their own activities and deciding how to use their time to solve the problem and master the learning objectives.
Teaching in PBL normally occurs within small discussion groups of students facilitated by a faculty tutor (Aspy, Aspy, & Quimby, 1993, Bridges & Hallinger, 1991, Mayo, Donnelly, Nash, & Schwartz, 1993).
Depending on the version of PBL, the teams have more or less responsibilty for determining learning issues and locating resource materials required to solve the problem.
Because the amount of direct instruction is reduced in PBL, students assume greater responsibility for their own learning. The instructor's role becomes one of subject matter expert, resource guide, and task group consultant. This arrangement promotes group processing of information rather than an imparting of information by faculty (Vernon & Blake, 1993).  
Groups usually consist of 5 to 7 students. Each member of the group maintains a particular role throughout the duration of the project. The four possible roles are:
The tutor is most active in planning the PBL, the content and sequence of projects.
# project leader - proposes meeting agendas, suggests division of labor, and develops the overall project plan.
He encourages student participation, provides appropriate information to keep students on track, gives immediate and appropriate feedback, and assumes the role of mentor, tutor or fellow learner (Aspy et al., 1993).  
# facilitator - describes the process to be followed during the steps of the project plan, determines appropriate time to proceed in plan, and suggests adjustments to the plan as needed.
The tutor acts as metacognitive coach, serving as model, thinking aloud with students and practicing behavior he wants his students to use (Stepien and Gallagher, 1993.
# recorder - takes group notes of each meeting.
He also evaluates the students.
# team member - takes individual notes, participates in discussion, and reviews resource materials.


Other PBL models include a mentor or tutor in the group. This is often a faculty member, but another student sometimes functions in this role. Research is mixed as to the domain-specific expertise required of the mentor. It is unclear whether subject expertise is necessary in order to be an effective tutor.
=== Student's Role ===


==What does the individual do in PBL?== (Schmidt & Moust, 1998)
'''The individual student in PBL'''


The individual student in PBL has an active role in learning. PBL requires that students have responsibility for their own learning by identifying their learning issues and needs.  
In PBL, students have responsibility for their own learning by identifying their learning issues and needs.
According to Schmidt and Moust, the student progresses through a series of steps, "The Seven Jump", during the PBL process.
 
# Clarify unknown terms and concepts in the problem description.
The students work with the following learning materials:
# Define the problem(s). List the phenomena or events to be explained.
* the problem situation
# Analyze the problem(s). Step 1. Brainstorm. Try to produce as many different explanations for the phenomena as you think of. Use prior knowledge and common sense.
* a list of objectives that the student is expected to master while working on the problem
  [student outcomes - activation of prior knowledge, elaboration, restructuring of information, organization of information, intrinsic motivation]
* a reference list of materials that pertain to the basic objectives
# Analyze the problem(s). Step 2. Discuss. Criticize the explanations proposed and try to produce a coherent description of the processes that, according to what you think, underlie the phenomena or events.
* questions that focus on important concepts and applications of the knowledge base.
# Formulate learning issues for self-directed learning.
 
# Fill in gaps in your knowledge through self-study.
Time allotted to each project is fixed.
# Share your findings with your group and try to integrate the knowledge acquired into a comprehensive explanation for the phenomena or events. Check whether you know enough now.
Students work on the problem in project teams.
[student outcomes - restructuring, applying, problem solving]
Students are evaluated in multiple ways by instructors, peers, and self, using questionnaires, interviews, observation, and other assessment methods.
 
'''Groups in PBL'''
 
Students work in teams to complete the project, resolve the problem, and accomplish the learning objectives.  
 
Groups usually consist of 5 to 7 students. Four roles are possible:
* project leader - proposes meeting agendas, suggests division of labor, and develops the overall project plan.
* facilitator - describes the process to be followed during the steps of the project plan, determines appropriate time to proceed in plan, and suggests adjustments to the plan as needed.
* recorder - takes group notes of each meeting.
* team member - takes individual notes, participates in discussion, and reviews resource materials.
Some PBL models include a mentor or tutor in the group (often a faculty member, or another student).
 
The team schedules its own activities and decides how to use the allotted time
 
See also [[Problem-based learning and social software]]
 
== Discussion ==
 
=== Application of PBL: Advantages, Disadvantages ===
 
'''Advantages'''
 
Why is there an increase in scores resulting in PBL?
Information theory links 3 conditions to subsequent improved retrieval and use. Bridges & Hallinger (1991) report that students improve their comprehension because they:
# are better at activating prior knowledge,
# learn in a setting resembling their future context, and  
# elaborate more fully on the information presented.
   
Increased elaboration promotes mental processing, understanding, and recall. Because content is learned in context, definitions, information, theories, correlations, and principles are learned and integrated with one another (Mandin, Harasym, & Watanabe, 1995).
 
See also the [[learning level]] article.
 
The [http://www.bie.org/ Buck Institute fro Education (BIE)] sees PBL as a mean of developping what they call 21st century skills, meaning
* ICT literacy
* cognitive skills like critical thinking, creativeness
* Interpersonal skills
* Self- and task-managment skills
* personal charcteristics like ethical sensibility, civic responsibility, accountability
 
'''Disadvantages'''
 
Introducing PBL means
 
* changing the Curriculum
* introducing higher costs
* higher time demands: PBL takes more time to teach the same content
* change of roles: Students have to change attitude and go from memorization of facts to an active searching for information(Reithlingshoefer, 1992). Teachers have to shift from dissemination of information to a tutor's and guide role.
* formulation of appropriate problems that encompass both a large goal and specific objectives
* setting up appropriate assessment
* facing a lack of extrinsic rewards for PBL teaching
 
=== Is PBL better? ===
 
When determining the value of PBL curriculum, the literature has focused on 4 components :
 
* Attitudes: Students enrolled in PBL courses appear to have a more favorable attitude toward their course than students schooled in traditional instruction. Improved attitudes contribute to a variety of factors including increased course enrollment, enhanced interest in major course of study, and positive feedback from faculty and employers (Pincus, 1995); a reduced dropout rate (Bridges & Hallinger, 1991; Pincus, 1995); and an increase in student comments concerning the advantages of PBL after their learning experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995). Schmidt, Henny, and de Vries (1992) conclude that "problem based curricula do appear to provide a friendlier and more inviting educational climate."
 
* Basic knowledge: Test results seem split on basic knowledge comprehension. In the medical field, although it was sometimes found that students schooled with PBL performed worse on standardized tests, they performed better on clinical tests and equal on essay tests to conventionally-schooled students (Albanese, 1993). Not all studies are favorable to PBL, but Albanese found that PBL knowledge is more deeply ingrained and less likely to be forgotten.
 
* Problem solving ability: Reasoning and problem solving skills: The evidence appears supportive in finding PBL students better than conventional students in analyzing atypical medical cases (Albanese, 1993), and in having stronger problem solving skills (Gallagher, Stepien, & Rosenthal, 1992).
 
* Study habits: Team work Most PBL is done in small groups. Therefore it is not surprising to find that students who learn in this context tend to be more oriented toward collaborative learning.
 
== Examples and links ==
 
'''Examples'''
 
* [[Medicine Blends Computers and PBL]]
 
* [[Ace Training Ltd. A complete Case Study of Problem-based learning]]
 
* [http://ldt.stanford.edu/~jeepark/jeepark+portfolio/PBL/example2.htm Examples] of PBL from the Stanford Learning Laboratory.(find examples of PBL at university Level, in biology, environmental sciences, high School level, economics, environmental sciences, history, ancient worlds and english).
 
;University level
 
* [http://www.udel.edu/pbl/curric/bisc207prob.html Biology]
 
* [http://www.designworlds.com/techscape/Sherm_Inservice.html Teacher Training in Science]
Sherman Rosenfeld and Yehuda Ben-Hur, PBL in Science and Technology: A Case Study of Professional Development, Department of Science Teaching, Wizmann Institute of Science
 
* [http://www-fhs.mcmaster.ca/mhsi/problem-.htm Problem-Based Learning] at McMaster University (Canada).
 
;High School Level
 
* [http://score.rims.k12.ca.us/activity/bubbles/ History]
 
* [http://score.rims.k12.ca.us/activity/ancientworld/index.html Ancient World]
 
;Commercial PBL example cases


* [[Ace Training Ltd. A complete Case Study of Problem-based learning]]


'''Various links'''


The NASA sponsored project, The Classroom of the Future, employs PBL in its curriculum. The project offers classroom ready activities for teachers to use at various grade levels. The project provides guidance for both teachers and students in order to help them adjust to and utilize the PBL curriculum.
* [[Problem-based learning and electronic games]]


In the guide for students, the project suggests similar problem-solving steps:
* [[Problem-based learning and social software]]
# Read and analyze the problem scenario.
# List what is known.
# Develop a problem statement describing what the group is trying to solve, produce, respond to, or find out.
# List what the group needs to find out.
# List possible actions.
# Analyze information.
# Present findings


==Individual Learning Issues==
* [http://www.techforlearning.org/PBLresources.html Problem-based Learning resources] page with a comprehensive list of links of the technology for learning consortium.


An important objective of PBL is that students become responsible for their own learning and for what they will actually research. Consequently, throughout the PBL process, as students define and analyze the problem, they generate "learning issues."
* [http://www.imsa.edu/programs/pbln/ Problem-Based Learning] comprehensive site of the Illinois maths and science academy with description of pbl, rersources, examples and more.
Learning issues are questions generated by the students that need to be answered in order to solve the problem.
When the problem has been developed to the point that further analysis and understanding is inhibited by their lack of knowledge, the students undertake their self-directed learning, guided by the "Learning Issues" and motivated by the actions they anticipate taking.
The design of the problem and questioning by the teacher/tutor will lead students to identify learning issues relevant to the curriculum content objectives.
Some versions of PBL provide some learning issues for students in the form of objectives. In other versions of PBL, students are totally responsible for generating their learning needs.


==What is the role of the instructor in PBL?==
* [http://www.samford.edu/ctls/archives.aspx?id=2147484112 Problem-based learning pages] in the archives of the center for teaching, learning and scholarship from the samford university, alabama, previously center for problem-based learning


All of the literature reviewed in the creation of this site is unanimous about one aspect of PBL: the role of the instructor.
* [http://www.learning-theories.com/problem-based-learning-pbl.html Problem-Based Learning] pages of the learning-theories.com site: knowledge base and webliography.
In PBL, the instructor serves as a resource to the student teams. The instructor is frequently acts as a mentor or tutor to the group. The instructor reliquenshes the role of the dispenser of information.
The instructor is most active in planning the PBL the content and sequence of projects, providing immediate feedback on student work and discussion, and evaluating students.
In the classroom, teachers should act as metacognitive coaches, serving as models, thinking aloud with students and practicing behavior they want their students to use (Stepien and Gallagher, 1993).
Teachers coax and prompt students to use questions such as "What is going on here? What do we need to know more about? What did we do during the problem that was effective?" and take on responsibility for the problem. Over a period of time, students become self-directed learners, teachers then fade (Stepien and Gallagher, 1993).
Research suggests that students benefit from immediate feedback from instructors so that misconceptions can be cleared promptly (Norman and Schmidt, 1992). It is the job of the instructor to be aware of the progress and conversations within the groups so that students continue on fruitful paths.  


==Changes to be addressed by the Instructor==
* [http://www.ed.psu.edu/nasa/probtxt.html pennsylvania state university and nasa wiki-like page on pbl]


The instructor must also prepare and adjust to the changes that accompany the implementation of PBL.  
* [http://www.udel.edu/pbl/ very complete pbl site] of the university of delaware.
In addition to the shift in the role of the instructor, there is also a change in the structure of class time. Some authors (Schmidt, Bridges, Barrows) strongly suggest that the instructor provide unstructured time in the class in order for students to assemble in their teams, work with resources, contact and meet with faculty members who may be helpful to their project, and accomplish other tasks necessary in the resolution of the problem.
Some research (Gijselaers and Schmidt, 1992) has shown that there is a point of diminishing returns. After a certain number of hours per week, the amount of teacher-centered time in class detracts from students' self-study time.
The instructor may also need to address the perceived delay in the student performance that often occurs. Research shows that PBL students may not acheive as much, initially with the implementation of PBL (Schmidt, et. al, 1996). However, PBL students retain more than their traditionally educated counterparts and learn life-long, self-directed learning skills that other students may not.  


==How to do PBL==
* [http://www.mcli.dist.maricopa.edu/pbl/info.html PBL pages] of the maricopa center for learning and instruction MCLI, arizona with a searchable archive.


===A practical guide to Problem Based Learning===
* [http://pbl.cqu.edu.au/content/online_resources.htm resources site] from the queensland university


The Teacher Pages of NASA's Classroom of the Future provides an informative and practical way to use PBL in the classroom.
'''Journals:'''
Savery and Duffy (In Press), discuss issues for instructional design in constructivist environments:  
cAnchor all learning activities to a larger task or problem.
* Support the learner in developing ownership for the overall problem or task.
* Design an authentic task.
* Design the task and the learning environment to reflect the complexity of the environment students should be able to function in at the end of learning.
* Give the learner ownership of the process used to develop a solution.
* Design the learning environment to support and challenge learners' thinking.
* Encourage testing ideas against alternative views and alternative contexts.
* Provide opportunity for support and reflection on both the content learned and the learning process.


===Pre-PBL Throughts for Instructors===
* [http://docs.lib.purdue.edu/ijpbl/ The Interdisciplinary Journal of Problem-based Learning (IJPBL)] is an open access journal that publishes relevant, interesting, and challenging articles of research, analysis, or promising practice related to all aspects of implementing problem-based learning (PBL).


Barrows (How to Design a Problem Based Curriculum for the Pre-Clinical Year, 1985) also provides a suggested list of objectives for a course and recommends that both faculty and students are provided with the list at the start of the course. Although Barrows specialized in the application of PBL in medical education, his ideas can be generalized to other laboratory sciences. Here are his suggested objectives:
== References ==
By the end of the course, the student should be able to demonstrate capabilities in the following areas:
Analytical Reasoning Skills
* Generate several hypotheses
* Appropriate use of hypothesis-oriented inquiry-strategy
* Problem synthesis
* New hypothesis or new inquiry approach
* Protocol-oriented or routine inquiry
* Appropriate laboratory or diagnostic tests
* Final working hypothesis
* Management plan to correct the problem
Clinical or Laboratory skills
Self-assessment and self-study skills
* Assess adequacy of knowledge and reasoning skills in evaluating problems presented
* List information that needs to be reviewed or learned
Knowledge
* List of knowledge that needs to be learned and appropriately applied in analysis of problems


==Examples of PBL Problems==
Albanese, M., & Mitchell, S. (1993). Problem-based learning: A review of the literature on its outcomes and implementation issues. Academic Medicine. 68(1), 52-81.
http://sll.stanford.edu/pubs/jeepark/pblsite/example2.htm


Albanese, M. (2000) Problem-based learning: why curricula are likely to show little effect on knowledge and clinical skills.http://www3.interscience.wiley.com/journal/119185510/abstract?CRETRY=1&SRETRY=0


==Research on PBL==
Aspy, D.N., Aspy, C. B., & Quimby, P.M. (1993). What doctors can teach teachers about problem-based learning. Educational Leadership, 50(7), 22-24.
http://sll.stanford.edu/pubs/jeepark/pblsite/research.htm


==References==
Azer SA (2001) Problem-based learning. A critical review of its educational objectives and the rationale for its use. Saudi medical journal


Barrows, H.S. (1985). How to Design a Problem-based Curriculum for the Preclinical Years. New-York : Springer
Barrows, H.S. (1985). How to Design a Problem-based Curriculum for the Preclinical Years. New-York : Springer
Bernstein, P., Tipping, J., Bercovitz, K., & Skinner, H.A. (1995). Shifting students and faculty to a PBL curriculum: Attitudes changed and lessons learned. Academic Medicine, 70(3), 245-247.
Blumberg, P., Solomon, P., & Shehata, A. (1994, April). Age as a contextual cue in problem-based learning. Paper presented at the meeting of the American Educational Research Association, New Orleans, LA.


Bridges, E. M. (1992). Problem based learning for administrators. Eugene, OR: ERIC Clearinghouse on Educational Management. (ERIC Document Reproduction Service No. ED 347 617)
Bridges, E. M. (1992). Problem based learning for administrators. Eugene, OR: ERIC Clearinghouse on Educational Management. (ERIC Document Reproduction Service No. ED 347 617)


Problem Based Learning Initiative at Southern Illinois Institute : http://www.pbli.org/pbl/pbl1.htm
Bridges, E. M., & Hallinger, P. (1991, September). Problem-based learning in medical and managerial education. Paper presented for the Cognition and School Leadership Conference of the National Center for Educational Leadership and the Ontario Institute for Studies in Education, Nashville, TN.
 
Bridges, E. M., & Hallinger, P. (2006) Problem-based learning in leadership education. Teaching & learning [0887-9486]  Année:2006 volume:1996 numéro:68 page:53
 
Delafuente, J. C., Munyer, T. O., Angaran, D. M., & Doering, P. L. (1994). A problem solving active learning course in pharmacotherapy. American Journal of Pharmaceutical Education. 58(1), 61-64.
 
Dolmans, D. H., Gijselaers, W. H. & Schmidt, H. G. (1992, April). Do students learn what their teachers intend they learn? Guiding processes in problem-based learning. Paper presented at the meeting of the American Educational Research Association, San Francisco, CA.
 
Engel, C. (Ed.). (1992). Annals of Community-Oriented Education Volume 5. Network Community-Oriented Educational Institutions for Health Sciences. (pp. 193-198). Maastricht, The Netherlands: University of Limburg.
 
Farnsworth, C. C. (1994). Using computer simulations in problem-based learning. In M. Orey (Ed.), Proceedings of the Thirty-fifth ADCIS Conference (pp. 137-140). Nashville, TN: Omni Press.
 
Finkle, S.L. y Torp, L.L., “Introductory Documents”, Illinois Math and Science Academy, 1995.
 
Foley, R. P., Levy, J., Russinof, H. J., & Lemon, M. R. (1993 ). Planning and implementing a problem-based learning rotation for residents. Teaching and Learning in Medicine, 5(2), 102-106.
 
Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly. 36(4), 195-200.
 
García-Famoso (2005). Problem-based learning: a case study in computer science, m-ICTE 2005. [http://www.formatex.org/micte2005/196.pdf PDF], retrieved oct 2007.
 
Greening T. (1998). “Scaffolding for success in PBL”. Medical Education Online. Vol III.
 
Harden, R. M.  & Margery H. Davis, (1998) The continuum of problem-based learning, ''Medical Teacher'', Vol. 20, No. 4.
 
Kolodner, Janet, L. Paul J. Camp, David Crismond, Barbara Fasse, Jackie Gray, Jennifer Holbrook, Sadhana Puntambekar, Mike Ryan (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design(tm) Into Practice Journal of the Learning Sciences, Vol. 12, No. 4: pages 495-547 Abstract/PDF (Access restricted)
 
Mandin, H., Harasym, P., & Watanabe, M. (1995). Developing a "clinical presentation" curriculum at the University of Calgary. Academic Medicine, 70(3), 186-193.
 
Mayo, P., Donnelly, M. B., Nash, P. P., & Schwartz, R. W. (1993). Student Perceptions of Tutor Effectiveness in problem based surgery clerkship. Teaching and Learning in Medicine. 5(4), 227-233.
 
Mennin, S. P., Friedman, M, Skipper, B, Kalishman, S., & Snyder, J. (1993). Performances on the NBME I, II, and III by medical students in the problem-based learning and conventional tracks at the University of New Mexico. Academic Medicine, 68(8), 616-624.
 
Jeroen J.G. van Merriënboer, Perspectives on problem solving and instruction, Computers & Education, Volume 64, May 2013, Pages 153-160, ISSN 0360-1315, http://dx.doi.org/10.1016/j.compedu.2012.11.025.
(http://www.sciencedirect.com/science/article/pii/S0360131512002989)
 
Ostwald, M. J., Chen, S. E., Varnam, B., & McGeorge, W. D. (1992, November). The application of problem-based learning to distance education. Paper presented at the world conference of the International Council for Distance Education, Bangkok, Thailand.
 
Pincus, K. V. (1995). Introductory Accounting: Changing the First Course. New Directions for Teaching and Learning, 61, 88-98.
 
Rangachari, P. K. (1991). Design of a problem-based undergraduate course in pharmacology: Implications for the teaching of physiology. Advances in Physiology Education. 5(1), S14-S21.
 
Reithlingshoefer, S. J. (Ed.), (1992). The future of Nontraditional/Interdisciplinary Programs: Margin or mainstream? Selected Papers from the Tenth Annual Conference on Nontraditional and Interdisciplinary Programs, Virginia Beach, VA, 1-763.
 
Savery, J. R., and Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational Technology, 35, 31-38. Reviewed by Chuck Ferguson
 
Savery, John R.  and Thomas M. Duffy, Problem Based Learning: An instructional model and its constructivist framework, In B. Wilson (Ed.). Constructivist Learning Environments: Case Studies in Instructional Design, Educational Technology Publications Englewood Cliffs, NJ. [http://www3.uakron.edu/edfound/people/savery/papers/sav-duff.html HTML]
 
Savery John R. (2006), Overview of Problem-based Learning: Definitions and Distinctions, ''The Interdisciplinary Journal of Problem-based Learning (IJPBL)'', 1 (1). [http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1002&context=ijpbl PDF] (open access).
 
Savin-Baden, Maggi (2008). A Practical Guide to Problem-based Learning Online (Gebundene Ausgabe), Routlege, ISBN 0415437873 (hardcover), ISBN 0415437881 (paperback)
 
Scherly, Daniel (1997). Apprentissage par problèmes (APP) et les nouvelles technologies d'enseignement. Travail de séminaire, TECFA, [http://tecfa.unige.ch/~scherly/APP/APP.html HTML]
 
Schmidt, H. G., Henny, P. A., & de Vries, M. (1992). Comparing problem-based with conventional education: A review of the University of Limburg medical school experiment. Annals of Community-Oriented Education, 5, 193-198.
 
Schmidt, H. G., Van Der Arand, A., Moust, J. H., Kokx, I., & Boon, L. (1993). Influence of tutors' subject matter expertise on student effort and achievement in problem-based learning. Academic Medicine, 68(10), 784-791.


Schmidt H.G. & Moust J.H.C. (1998). Processes that Shape Small-Group Tutorial Learning: A Review of Research. Paper presented at Annual Meeting of the American Educational Research Association.  
Schmidt H.G. & Moust J.H.C. (1998). Processes that Shape Small-Group Tutorial Learning: A Review of Research. Paper presented at Annual Meeting of the American Educational Research Association.  
Schwartz, Peter, Ed.; Mennin, Stewart, Ed.; Webb, Graham, Ed. Problem-Based Learning: (2001) Case Studies, Experience and Practice. Case Studies of Teaching in Higher Education. Book
Song,Hae-Deok, Grabowski,Barbara, Koszalka,Tiffany, Harkness,William, Patterns of Instructional-design Factors Prompting Reflective Thinking in Middle-school and College Level Problem-based Learning Environments, Instructional Science, 34, 1, 1/5/2006, Pages 63-87, [http://dx.doi.org/10.1007/s11251-005-6922-4, DOI 10.1007/s11251-005-6922-4]


Stepien, W.J. and Gallagher, S.A. 1993. "Problem-based Learning: As Authentic as it Gets." Educational Leadership. 50(7) 25-8
Stepien, W.J. and Gallagher, S.A. 1993. "Problem-based Learning: As Authentic as it Gets." Educational Leadership. 50(7) 25-8
Uden, Lorna and Chris Beaumont (2005). Technology and Problem-Based Learning, Information Science Publishing, ISBN 1591407443
Van Berkel (2006) problem-based learning: The influence of tutoring competencies on problems, group functioning and student achievement in problem-based learning. Medical education
Vernon, D. T. (1995). Attitudes and opinions of faculty tutors about problem-based learning. Academic Medicine, 70(3) 216-223.
Vernon, D. T., & Blake, R. L. (1993). Does problem-based learning work? A meta-analysis of evaluative research. Academic Medicine, 68(7) 550-563.
Wilkinson, T.W., & Sherman, T.M. (1991). Telecommunications-based distance education: Who's doing what? Educational Technology, 31(11), 54-59.
Williams, R., Saarinen-Rahikka, H., & Norman, G. R. (1995). Self-Directed learning in problem-based health science education. Academic Medicine, 70(2), 161-163.
Woloschuk, Wayne (2000) Use of scheme-based problem solving: an evaluation of the implementation and utilization of schemes in a clinical presentation curriculum Medical Education, Volume 34, Number 6, June 2000 , pp. 437-442(6)
Wood, D. F. (2003). A. B. C.'s of learning and teaching in medicine: Problem-based learning. British Medical Journal, 326.
[[Category:Instructional design models]]
[[Category:Pedagogic strategies]]
[[Category:Project-oriented instructional design models]]
[[fr:apprentissage par problème]]

Latest revision as of 16:43, 21 March 2014

Introduction

Problem-based learning (PBL in this article) is defined by Finkle and Torp (1995) as, “a curriculum development and instructional system that simultaneously develops both problem solving strategies and disciplinary knowledge bases and skills by placing students in the active role of problem solvers confronted with an ill-structured problem that mirrors real-world problems”.

What is PBL?

Problem-based learning is an instructional design model and a variant of project-oriented learning. It is closely related to inquiry-based learning.

Real-life problems seldom parallel well-structured problems; hence, the ability to solve traditional school-based problems does little to increase relevant, critical thinking skills. Real-life problems present an ever-changing variety of goals, contexts, contents, obstacles, and unknowns which influence how each problem should be approached. To be successful, students need to practice solving ill-structured problems that reflect life beyond the classroom. These skills are the goal of PBL. With Problem-Based Learning, students engage in authentic experiences.

PBL is inherently social and collaborative in methodology and teaches students essential "soft skills" as well as domain specific content and skills. PBL is learner-centered and gives the learners progressively more responsibility and independence in their education. It encourages life-long learning. In PBL, it is the problem that drives the curriculum. It does not test a skill, it assists in the development of the skill itself. There is no one solution: the problem is solved in an iterative process where the perception of the problem can change as do the solutions found.

What Skills do Students learn?

Through PBL, students learn:

  • Solving real-life problems: Learning to solve relevant and contextual problems congruent with workplace skills, develop initiative, performance ability and enthusiasm.
  • Efficient problem solving: Develop the ability to find and use appropriate resources for problem solving
  • Independant learning: Employ effective self-directed and self-motivated learning skills and proactive thinking to continue learning as a lifetime habit
  • Self-monitoring: Continuously monitor and assess the adequacy of their own knowledge and of their problem-solving skills, practice critical thinking (see also cognitive tools)
  • Team work: Efficient collaboration as a member of a group, communication and leadership skills, social and ethical skills.

From the problem based learning initiative of the southern illinois university and the Stanford site on PBL

Historical Background

Problem-Based Learning (PBL) has become popular because of its benefits to student learning.

PBL can be thought of as a combination of cognitive and social constructivist theories, as developed by Piaget and Vygotsky, respectively. The first application of PBL was in medical schools which rigorously test the knowledge base of graduates. According to García-Famoso (2005), “PBL was first applied in the 60s, in the Faculty of Health Sciences of McMaster University (Canada) and in the School of Medicine of Case Western Reserve University (United States). The main objective was twofold: to develop problem solving skills and bring learning closer to real medical problems.” After these first experiences, many medical and professional schools started to use some form of PBL, for example, Harvard Medical School or, in Europe, Maastrich University. Many medical and professional schools, as well as undergraduate and graduate programs, use PBL in some form. Over 80% of medical schools use the PBL methodology to teach students about clinical cases, either real or hypothetical (Vernon & Blake, 1993, Bridges & Hallinger, 1991).

Models of PBL, Designing PBL curricula

Models of PBL

There are many problem-based learning models. E.g. Edwin Bridges (1992) suggests that there are two versions of PBL that have been implemented in the classroom, problem-stimulated PBL and Student Centered PBL.

Problem Stimulated PBL (PS PBL)

PS PBL uses role relevant problems in order to introduce and learn new knowledge.

PS PBL emphasizes 3 major goals:

  • development of domain-specific skills
  • development of problem-solving skills
  • acquisition of domain-specific knowledge

Student Centered PBL (SC PBL)

SC PBL has the same goals as PS PBL, but includes one more: fostering life-long learning skills. Physicians are one group of professionals who are required to stay current with new developments in their fields. The skills of a life-long learner are particularly important for this group. Hence, several medical schools employ student centered PBL.

The major differences with PS PBL are in student responsibilities. In SC PBL:

  • students themselves identify the learning issues they wish to explore
  • students determine the content to be mastered
  • students determine and locate the resources to be used

In short, students have self-defined learning issues. As is the case with PS PBL, students decide how to appropriately use the newly acquired information and knowledge in order to solve the problem at hand.

Case-based PBL See learning by design. The typical sequence of activities in a Learning-by-Design unit has students encountering a design challenge and attempting a solution using only prior knowledge. Students compare and contrast their ideas, identify what they need to learn to move forward in addressing the design challenge, choose a learning issue to focus on, and design and/or run a laboratory activity to examine that issue. Following this are cycles of exploratory and experimental work.Kolodner, Crismond, Gray, Holbrook & Puntembakar (1998)

Designing PBL

Integrating PBL into a Curriculum

Design Considerations:

  • How should PBL be incorporated into the curriculum?
  • What problems should be used and how should they be presented?
  • What are the instructional goals?
  • How should small groups be formed?
  • How much should each problem be prestructured?
  • How to evaluate the program and the students?
  • What resources should be available?
  • How to prepare students and faculty for PBL? (Bridges, 1992).

Creating appropriate Problems

PBL problems should be created with :

  • introduction
  • content
  • learning objectives
  • resources
  • expected outcome
  • guiding questions
  • assessment exercises
  • time frame

(Bridges, 1992)

The best format for problems is unorganized, unsynthesized, and open-ended because this allows for student processing. Students are motivated to use their reasoning skills and relate the content to their own context and previous knowledge. Focus problems on current events, student lives, or relationships to actual occurrences. Problems should be interdisciplinar and task oriented. It should not only focus on the large problem but also take students through the objectives. (Albanese & Mitchell, 1993)

Novice learners require more structure and cues while more experienced students are self-directed learners. Software can be used in the PBL curriculum, but avoid telling students when the solution is reached. This stops the learning process. Point out inappropriate strategies. Complex problems usually require learners to exhibit management, research, and thinking skills that help distinguish less expert from more expert performers. This differentiation can help serve as a grading standards in the class.(Albanese & Mitchell, 1993)

Getting Started

  • Anticipate and manage anxiety (Bernstein, Tipping, Bercovitz, & Skinner, 1995).
  • Explain to all involved what is happening and why.
  • Tutors should receive training (Foley, Levy, Russinof, & Lemon, 1993).
  • Students should be oriented to PBL.
  • State the PBL goals.
  • Randomly assign students to PBL (Mennin Friedman, Skipper, Kalishman, & Snyder, 1993).

According to Schmidt and Moust (1989), the student progresses through a series of steps, "The Seven Jump", during the PBL process.

  1. Clarify unknown terms and concepts in the problem description.
  2. Define the problem(s). List the phenomena or events to be explained.
  3. Analyze the problem(s). Step 1. Brainstorm. Try to produce as many different explanations for the phenomena as you think of. Use prior knowledge and common sense. Student outcomes: activation of prior knowledge, elaboration, restructuring of information, organization of information, intrinsic motivation (see also Flow theory, Motivation).
  4. Analyze the problem(s). Step 2. Discuss. Criticize the explanations proposed and try to produce a coherent description of the processes that, according to what you think, underlie the phenomena or events.
  5. Formulate learning issues for self-directed learning.
  6. Fill in gaps in your knowledge through self-study.
  7. Share your findings with your group and try to integrate the knowledge acquired into a comprehensive explanation for the phenomena or events. Check whether you know enough now. Student outcomes: restructuring, applying, problem solving.

Evaluation

Because instruction and learning is different in problem based settings than traditional instruction, many instructors find student evaluation difficult.

PBL encourages development of meta-cognitive skills like group learning or research and communication skills and aims transferring knowledge to novel situations. With such multiple purposes for PBL, it is important to consider a variety of evaluation techniques:

  • Written examinations: should be designed to ensure transference of skills to similar problems or subject domains.
  • Practical examinations: used to ensure that students are able to apply skills learned during the course.
  • Concept maps: much of the learning that goes on during PBL is more than just a compilation of facts. As such, written examinations may not be an adequate measure of student growth. Requiring students to generate concept maps, in which they depict their knowledge through the creation of identified nodes and links, may present another option to determine their cognitive growth.
  • Peer assessment: because life outside the classroom usually requires working with others, peer assessment is a viable option to measure student growth. Providing students with an evaluation rubric often helps guide the peer evaluation process. This process also emphasizes the cooperative nature of the PBL environment.
  • Self assessment: an important element of PBL is to help students identify gaps in their knowledge base in order for more meaningful learning to result. Self assessment allows students to think more carefully about what they know, what they do not know, and what they need to know to accomplish certain tasks.
  • Facilitators/tutor assessment: the feedback provided by tutors should encourage the students to explore different ideas. It is important that facilitators do not dominate the group and facilitate learning and exploration. Tutor assessment may consist of how successful individuals interacted with their group and their cognitive growth.
  • Oral Presentations: because so much of work life revolves around presenting ideas and results to peers, oral presentation in PBL provide students an opportunity to practice their communication skills. Presenting findings to their group, the class, or even a real-life audience can help strengthen these skills.
  • Reports: Written communication is another skill important for students. Requiring written reports allows students to practice this form of communication.

Evaluation is an iterative process. Be prepared to make changes along the way based on experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995).

Ressources

Ensure resources and time are available for self-study. "If students are to be genuinely empowered with their own learning, it is important to provide them with the necessary infrastructure." (Rangagachari, 1991). PBL students study in the library more than conventional students and study more during the day than the evening. Increasing the time spent instructing students decreases the time students spend in self-study (Williams, Saarinen-Rahikka, & Norman, 1995). If students must learn basic science or similar material for national standardized examinations, increase student access to self-assessment, provide practice examinations, allow additional examination preparation time (Mennin et al., 1993).

See also Problem-based learning and electronic games

Roles in PBL

Instructor's Role

Teaching in PBL normally occurs within small discussion groups of students facilitated by a faculty tutor (Aspy, Aspy, & Quimby, 1993, Bridges & Hallinger, 1991, Mayo, Donnelly, Nash, & Schwartz, 1993). Because the amount of direct instruction is reduced in PBL, students assume greater responsibility for their own learning. The instructor's role becomes one of subject matter expert, resource guide, and task group consultant. This arrangement promotes group processing of information rather than an imparting of information by faculty (Vernon & Blake, 1993). The tutor is most active in planning the PBL, the content and sequence of projects. He encourages student participation, provides appropriate information to keep students on track, gives immediate and appropriate feedback, and assumes the role of mentor, tutor or fellow learner (Aspy et al., 1993). The tutor acts as metacognitive coach, serving as model, thinking aloud with students and practicing behavior he wants his students to use (Stepien and Gallagher, 1993. He also evaluates the students.

Student's Role

The individual student in PBL

In PBL, students have responsibility for their own learning by identifying their learning issues and needs.

The students work with the following learning materials:

  • the problem situation
  • a list of objectives that the student is expected to master while working on the problem
  • a reference list of materials that pertain to the basic objectives
  • questions that focus on important concepts and applications of the knowledge base.

Time allotted to each project is fixed. Students work on the problem in project teams. Students are evaluated in multiple ways by instructors, peers, and self, using questionnaires, interviews, observation, and other assessment methods.

Groups in PBL

Students work in teams to complete the project, resolve the problem, and accomplish the learning objectives.

Groups usually consist of 5 to 7 students. Four roles are possible:

  • project leader - proposes meeting agendas, suggests division of labor, and develops the overall project plan.
  • facilitator - describes the process to be followed during the steps of the project plan, determines appropriate time to proceed in plan, and suggests adjustments to the plan as needed.
  • recorder - takes group notes of each meeting.
  • team member - takes individual notes, participates in discussion, and reviews resource materials.

Some PBL models include a mentor or tutor in the group (often a faculty member, or another student).

The team schedules its own activities and decides how to use the allotted time

See also Problem-based learning and social software

Discussion

Application of PBL: Advantages, Disadvantages

Advantages

Why is there an increase in scores resulting in PBL? Information theory links 3 conditions to subsequent improved retrieval and use. Bridges & Hallinger (1991) report that students improve their comprehension because they:

  1. are better at activating prior knowledge,
  2. learn in a setting resembling their future context, and
  3. elaborate more fully on the information presented.

Increased elaboration promotes mental processing, understanding, and recall. Because content is learned in context, definitions, information, theories, correlations, and principles are learned and integrated with one another (Mandin, Harasym, & Watanabe, 1995).

See also the learning level article.

The Buck Institute fro Education (BIE) sees PBL as a mean of developping what they call 21st century skills, meaning

  • ICT literacy
  • cognitive skills like critical thinking, creativeness
  • Interpersonal skills
  • Self- and task-managment skills
  • personal charcteristics like ethical sensibility, civic responsibility, accountability

Disadvantages

Introducing PBL means

  • changing the Curriculum
  • introducing higher costs
  • higher time demands: PBL takes more time to teach the same content
  • change of roles: Students have to change attitude and go from memorization of facts to an active searching for information(Reithlingshoefer, 1992). Teachers have to shift from dissemination of information to a tutor's and guide role.
  • formulation of appropriate problems that encompass both a large goal and specific objectives
  • setting up appropriate assessment
  • facing a lack of extrinsic rewards for PBL teaching

Is PBL better?

When determining the value of PBL curriculum, the literature has focused on 4 components :

  • Attitudes: Students enrolled in PBL courses appear to have a more favorable attitude toward their course than students schooled in traditional instruction. Improved attitudes contribute to a variety of factors including increased course enrollment, enhanced interest in major course of study, and positive feedback from faculty and employers (Pincus, 1995); a reduced dropout rate (Bridges & Hallinger, 1991; Pincus, 1995); and an increase in student comments concerning the advantages of PBL after their learning experience (Bernstein, Tipping, Bercovitz, & Skinner, 1995). Schmidt, Henny, and de Vries (1992) conclude that "problem based curricula do appear to provide a friendlier and more inviting educational climate."
  • Basic knowledge: Test results seem split on basic knowledge comprehension. In the medical field, although it was sometimes found that students schooled with PBL performed worse on standardized tests, they performed better on clinical tests and equal on essay tests to conventionally-schooled students (Albanese, 1993). Not all studies are favorable to PBL, but Albanese found that PBL knowledge is more deeply ingrained and less likely to be forgotten.
  • Problem solving ability: Reasoning and problem solving skills: The evidence appears supportive in finding PBL students better than conventional students in analyzing atypical medical cases (Albanese, 1993), and in having stronger problem solving skills (Gallagher, Stepien, & Rosenthal, 1992).
  • Study habits: Team work Most PBL is done in small groups. Therefore it is not surprising to find that students who learn in this context tend to be more oriented toward collaborative learning.

Examples and links

Examples

  • Examples of PBL from the Stanford Learning Laboratory.(find examples of PBL at university Level, in biology, environmental sciences, high School level, economics, environmental sciences, history, ancient worlds and english).
University level

Sherman Rosenfeld and Yehuda Ben-Hur, PBL in Science and Technology: A Case Study of Professional Development, Department of Science Teaching, Wizmann Institute of Science

High School Level
Commercial PBL example cases

Various links

  • Problem-Based Learning comprehensive site of the Illinois maths and science academy with description of pbl, rersources, examples and more.
  • Problem-based learning pages in the archives of the center for teaching, learning and scholarship from the samford university, alabama, previously center for problem-based learning
  • PBL pages of the maricopa center for learning and instruction MCLI, arizona with a searchable archive.

Journals:

References

Albanese, M., & Mitchell, S. (1993). Problem-based learning: A review of the literature on its outcomes and implementation issues. Academic Medicine. 68(1), 52-81.

Albanese, M. (2000) Problem-based learning: why curricula are likely to show little effect on knowledge and clinical skills.http://www3.interscience.wiley.com/journal/119185510/abstract?CRETRY=1&SRETRY=0

Aspy, D.N., Aspy, C. B., & Quimby, P.M. (1993). What doctors can teach teachers about problem-based learning. Educational Leadership, 50(7), 22-24.

Azer SA (2001) Problem-based learning. A critical review of its educational objectives and the rationale for its use. Saudi medical journal

Barrows, H.S. (1985). How to Design a Problem-based Curriculum for the Preclinical Years. New-York : Springer

Bernstein, P., Tipping, J., Bercovitz, K., & Skinner, H.A. (1995). Shifting students and faculty to a PBL curriculum: Attitudes changed and lessons learned. Academic Medicine, 70(3), 245-247.

Blumberg, P., Solomon, P., & Shehata, A. (1994, April). Age as a contextual cue in problem-based learning. Paper presented at the meeting of the American Educational Research Association, New Orleans, LA.

Bridges, E. M. (1992). Problem based learning for administrators. Eugene, OR: ERIC Clearinghouse on Educational Management. (ERIC Document Reproduction Service No. ED 347 617)

Bridges, E. M., & Hallinger, P. (1991, September). Problem-based learning in medical and managerial education. Paper presented for the Cognition and School Leadership Conference of the National Center for Educational Leadership and the Ontario Institute for Studies in Education, Nashville, TN.

Bridges, E. M., & Hallinger, P. (2006) Problem-based learning in leadership education. Teaching & learning [0887-9486] Année:2006 volume:1996 numéro:68 page:53

Delafuente, J. C., Munyer, T. O., Angaran, D. M., & Doering, P. L. (1994). A problem solving active learning course in pharmacotherapy. American Journal of Pharmaceutical Education. 58(1), 61-64.

Dolmans, D. H., Gijselaers, W. H. & Schmidt, H. G. (1992, April). Do students learn what their teachers intend they learn? Guiding processes in problem-based learning. Paper presented at the meeting of the American Educational Research Association, San Francisco, CA.

Engel, C. (Ed.). (1992). Annals of Community-Oriented Education Volume 5. Network Community-Oriented Educational Institutions for Health Sciences. (pp. 193-198). Maastricht, The Netherlands: University of Limburg.

Farnsworth, C. C. (1994). Using computer simulations in problem-based learning. In M. Orey (Ed.), Proceedings of the Thirty-fifth ADCIS Conference (pp. 137-140). Nashville, TN: Omni Press.

Finkle, S.L. y Torp, L.L., “Introductory Documents”, Illinois Math and Science Academy, 1995.

Foley, R. P., Levy, J., Russinof, H. J., & Lemon, M. R. (1993 ). Planning and implementing a problem-based learning rotation for residents. Teaching and Learning in Medicine, 5(2), 102-106.

Gallagher, S. A., Stepien, W. J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly. 36(4), 195-200.

García-Famoso (2005). Problem-based learning: a case study in computer science, m-ICTE 2005. PDF, retrieved oct 2007.

Greening T. (1998). “Scaffolding for success in PBL”. Medical Education Online. Vol III.

Harden, R. M. & Margery H. Davis, (1998) The continuum of problem-based learning, Medical Teacher, Vol. 20, No. 4.

Kolodner, Janet, L. Paul J. Camp, David Crismond, Barbara Fasse, Jackie Gray, Jennifer Holbrook, Sadhana Puntambekar, Mike Ryan (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design(tm) Into Practice Journal of the Learning Sciences, Vol. 12, No. 4: pages 495-547 Abstract/PDF (Access restricted)

Mandin, H., Harasym, P., & Watanabe, M. (1995). Developing a "clinical presentation" curriculum at the University of Calgary. Academic Medicine, 70(3), 186-193.

Mayo, P., Donnelly, M. B., Nash, P. P., & Schwartz, R. W. (1993). Student Perceptions of Tutor Effectiveness in problem based surgery clerkship. Teaching and Learning in Medicine. 5(4), 227-233.

Mennin, S. P., Friedman, M, Skipper, B, Kalishman, S., & Snyder, J. (1993). Performances on the NBME I, II, and III by medical students in the problem-based learning and conventional tracks at the University of New Mexico. Academic Medicine, 68(8), 616-624.

Jeroen J.G. van Merriënboer, Perspectives on problem solving and instruction, Computers & Education, Volume 64, May 2013, Pages 153-160, ISSN 0360-1315, http://dx.doi.org/10.1016/j.compedu.2012.11.025. (http://www.sciencedirect.com/science/article/pii/S0360131512002989)

Ostwald, M. J., Chen, S. E., Varnam, B., & McGeorge, W. D. (1992, November). The application of problem-based learning to distance education. Paper presented at the world conference of the International Council for Distance Education, Bangkok, Thailand.

Pincus, K. V. (1995). Introductory Accounting: Changing the First Course. New Directions for Teaching and Learning, 61, 88-98.

Rangachari, P. K. (1991). Design of a problem-based undergraduate course in pharmacology: Implications for the teaching of physiology. Advances in Physiology Education. 5(1), S14-S21.

Reithlingshoefer, S. J. (Ed.), (1992). The future of Nontraditional/Interdisciplinary Programs: Margin or mainstream? Selected Papers from the Tenth Annual Conference on Nontraditional and Interdisciplinary Programs, Virginia Beach, VA, 1-763.

Savery, J. R., and Duffy, T. M. (1995). Problem based learning: An instructional model and its constructivist framework. Educational Technology, 35, 31-38. Reviewed by Chuck Ferguson

Savery, John R. and Thomas M. Duffy, Problem Based Learning: An instructional model and its constructivist framework, In B. Wilson (Ed.). Constructivist Learning Environments: Case Studies in Instructional Design, Educational Technology Publications Englewood Cliffs, NJ. HTML

Savery John R. (2006), Overview of Problem-based Learning: Definitions and Distinctions, The Interdisciplinary Journal of Problem-based Learning (IJPBL), 1 (1). PDF (open access).

Savin-Baden, Maggi (2008). A Practical Guide to Problem-based Learning Online (Gebundene Ausgabe), Routlege, ISBN 0415437873 (hardcover), ISBN 0415437881 (paperback)

Scherly, Daniel (1997). Apprentissage par problèmes (APP) et les nouvelles technologies d'enseignement. Travail de séminaire, TECFA, HTML

Schmidt, H. G., Henny, P. A., & de Vries, M. (1992). Comparing problem-based with conventional education: A review of the University of Limburg medical school experiment. Annals of Community-Oriented Education, 5, 193-198.

Schmidt, H. G., Van Der Arand, A., Moust, J. H., Kokx, I., & Boon, L. (1993). Influence of tutors' subject matter expertise on student effort and achievement in problem-based learning. Academic Medicine, 68(10), 784-791.

Schmidt H.G. & Moust J.H.C. (1998). Processes that Shape Small-Group Tutorial Learning: A Review of Research. Paper presented at Annual Meeting of the American Educational Research Association.

Schwartz, Peter, Ed.; Mennin, Stewart, Ed.; Webb, Graham, Ed. Problem-Based Learning: (2001) Case Studies, Experience and Practice. Case Studies of Teaching in Higher Education. Book

Song,Hae-Deok, Grabowski,Barbara, Koszalka,Tiffany, Harkness,William, Patterns of Instructional-design Factors Prompting Reflective Thinking in Middle-school and College Level Problem-based Learning Environments, Instructional Science, 34, 1, 1/5/2006, Pages 63-87, DOI 10.1007/s11251-005-6922-4

Stepien, W.J. and Gallagher, S.A. 1993. "Problem-based Learning: As Authentic as it Gets." Educational Leadership. 50(7) 25-8

Uden, Lorna and Chris Beaumont (2005). Technology and Problem-Based Learning, Information Science Publishing, ISBN 1591407443

Van Berkel (2006) problem-based learning: The influence of tutoring competencies on problems, group functioning and student achievement in problem-based learning. Medical education

Vernon, D. T. (1995). Attitudes and opinions of faculty tutors about problem-based learning. Academic Medicine, 70(3) 216-223.

Vernon, D. T., & Blake, R. L. (1993). Does problem-based learning work? A meta-analysis of evaluative research. Academic Medicine, 68(7) 550-563.

Wilkinson, T.W., & Sherman, T.M. (1991). Telecommunications-based distance education: Who's doing what? Educational Technology, 31(11), 54-59.

Williams, R., Saarinen-Rahikka, H., & Norman, G. R. (1995). Self-Directed learning in problem-based health science education. Academic Medicine, 70(2), 161-163.


Woloschuk, Wayne (2000) Use of scheme-based problem solving: an evaluation of the implementation and utilization of schemes in a clinical presentation curriculum Medical Education, Volume 34, Number 6, June 2000 , pp. 437-442(6)


Wood, D. F. (2003). A. B. C.'s of learning and teaching in medicine: Problem-based learning. British Medical Journal, 326.