Discussion:Méta-analyse
très bien, super,
Salut,
J'ai lu le texte pour m'aider pour mon propre rapport. Il m'a été de grande utilité.
Meilleures salutations
remarques sur l'article -- Sandra 24 février 2011 à 11:27 (CET)
Hello,
Après lecture de ton article, j'ai plusieurs remarques :
- - concernant les critères d'inclusion (point 2) : tu dis "Il est également possible de regrouper les études inclues et d'analyser ensuite si l'inclusion de l'un ou l'autre groupe influe sur la taille des effets"
je ne comprends pas bien cette phrase, car les critères d'inclusion servent uniquement à décider si oui ou non l'étude X pourra faire partie de ton analyse. Les critères sont fixes et tu ne peux pas y déroger.
- Homogénéité des effets (point 4) : L'assomption d'indépendances des études est un critère central pour l'approche de méta-analyse. Il se traduit par l'effet d'homogénéité. Il est important car c'est lui qui détermine si l'effet global est valide (et donc il y a une homogénéité des résultats), ou s'il faut faire des analyses complémentaires (subgroups analysis) à cause du manque d'homogénéité dans les résultats.
Malheureusement, Hoeffler et Leutner (2007) ne tiennent pas compte de ceci, c'est en autre, ce qui nous a poussé à répliquer leurs analyses, et à faire notre propre analyse avec, cette fois, une procédure statistique en bonne et due forme. Il n'est jamais aisé de prendre en compte cette homogénéité/hétérogénéité, car si justement dans ton analyse, tu as beaucoup d'études aux résultats fort divers, il est à parier qu'il existe soit un problème avec les critères d'inclusion (trop permissifs), soit avec la variable de construit que tu cherches à analyser (multiples variables dépendantes, et donc violation de l'assomption d'indépendance des études)
La variabilité de l'effet global (overall effect) doit être testé par une analyse d'homogénéité (statistiques Q, qui a une distribution en Chi carré (Cooper, 1989; Hedges & Olkin, 1985). Un Q significatif détermine des explorations supplémentaires (analyses en groupes, analyse des modérateurs, etc.) Par ailleurs, pour montrer/calculer des différences parmi les multiples variables dépendantes ou parmis les analyses en sous-groupes ou les analyses des modérateurs, il faut utiliser une procédure analogue à l'analyse de variance (analogs of analysis of variance), et qui fournit des valeurs were used, which provide overall and subgroups Z values. The overall Z value tests the effect of the grouping procedure; that is the impact of the moderator. The moderator's subgroups Z value therefore indicates the effect of the effect size (i.e the difference between animated versus static displays) when grouped according to this moderator or dependent variable (Borenstein, Hedges, & Rothstein, 2009)
- le choix de la méthode : pour compléter le paragraphe sur la méthode aléatoire : Le modèle des effets aléatoires assumes que chaque étude est associée avec un paramètre différent mais relié à la variable analysée.