Méta-analyse
Cet article est en construction: un auteur est en train de le modifier.
En principe, le ou les auteurs en question devraient bientôt présenter une meilleure version.
Sugarch0 travaille actuellement à cette page
Introduction
La méta-analyse est une démarche, plus qu'une simple technique[1], utilisée pour réunir et combiner pour les analyser plusieurs études empiriques ayant la même question de recherche. Leurs résultats sont intégrés pour obtenir un gain de puissance statistique, utile lorsqu'il existe plusieurs études avec de petits effectifs, mais également lorsque dans un domaine précis, les conclusions de différentes études sont contradictoires. Cette démarche est donc appliquée dans des domaines de recherche où il est difficile de réunir de grands effectifs pour une recherche empirique, et où il existe un grand nombre de variables influençant les effets mesurés, tels que les sciences sociales et de l'éducation, mais aussi la médecine. Dans ces domaines, la réplication des résultats d'une recherche est primordiale aussi bien pour réduire les erreurs de mesure que pour valider une précédente étude.[2]. La méta-analyse permet d'exploiter les effectifs de toutes les études ayant une même question de recherche et d'en analyser les résultats de manière nuancée.
Historique et contexte
La question de savoir comment combiner les résultats de plusieurs travaux de recherche indépendants est apparue dès le début du développement de la recherche scientifique empirique. Archie Cochrane, un médecin anglais né en 1909 [1] a été un des premier à souligner l’"impérieuse nécessité de rassembler et de faire la synthèse des données actuelles de la science en thérapeutique." Il a conduit les premiers travaux combinant les résultats de plusieurs études cliniques en 1954. Parallèllement, les méthodes statistiques telles que la combinaison des valeurs de 'p' (Fisher 1932) ou la méthode publiée par Mantel et Haenszel (1959) permettant de faire la comparaison de plus de deux échantillons appariés [3] se sont développées. Elles permettent d'étudier scientifiquement des systèmes qui, à la différence des sciences exactes, se caractérisent par une grande variabilité et qui doivent donc être analysés statistiquement [1].
En 1976, Gene Glass, de l'université du Colorado, introduit le terme de méta-analyse [4]. Il le définit comme "l'analyse statistique des résultats d'analyse d'un grand groupe d'études individuelles dans le but d'intégrer leurs résultats". Cette alternative aux plus classiques revues de la littérature [5] crée aussitôt une controverse [6] portant surtout sur la bonne utilisation de cet outil qui était aussi appelé "revue quantitative" ou "synthèse quantitative" [1].
Avec le développement des outils de recherche des données et de calcul statistique dès les années 1990, la méta-analyse est devenue une technique largement utilisée aussi bien dans le domaine des sciences de l'éducation ou de la psychologie que de la médecine.
Définition et enjeux
Principes de base
Que ce soit lors d'une décision thérapeutique en médecine ou pour argumenter le choix d'un format pédagogique [7], la méta-analyse répond au besoin grandissant de données synthétiques permettant de prendre une décision en se basant sur une somme de connaissances en constante augmentation [1]. Contrairement à une revue de la littérature, la méta-analyse suit une démarche argumentée et reproductible qui se base sur trois grands principes [1]:
- Exhaustivité des études analysées
- Sélection argumentée des études
- Quantification de l'effet étudié
En effet, il ne s'agit pas d'additionner directement les effectifs des études sélectionnées, ce qui reviendrait à combiner des éléments disparates, mais d'étudier et de comparer la taille des effets produits (ou non) dans ces études [6].
Types de méta-analyse
Il existe plusieurs types de méta-analyse:[1]
- Analyse basée sur les données résumées de la littérature:
Seuls les études publiées sont incluses dans cette analyse, qui est fréquente mais qui ne peut dans les faits être considérée comme une méta-analyse: Elle déroge au principe d'exhaustivité cité plus haut. Cette méthode d'analyse comprend donc un grand risque de biais de publication (voir plus bas.
- Méta-analyse exhaustive sur données résumées:
cette méta-analyse se base sur les données résumées de toutes les études accessibles, publiées ou non.
- Méta-analyse sur données individuelles:
Cette méta-analyse utilise les fichiers d'analyse, en général d'essais cliniques, pour se baser sur les données individuelles des patients inclus dans ces différents essais [8].
Enjeux
La méta-analyse permet donc d'examiner les effets produits (ou non) dans les différentes études ou essais pris en considération. Elle permettra d'évaluer par exemple
- Les moyennes et variances d'un effet dans une population pour différents intervalles de confiance
- La variabilité des effets pour toutes les études inclues
- les variables modératrices influençant une effet lors d'une variabilité des effets
Méthode
exemples
Conclusion
Bibliographie et Webographie
- ↑ 1,0 1,1 1,2 1,3 1,4 1,5 et 1,6 manuel pratique de méta-analyse des essais thérapeutiques, Cucherat M, leizorivicz A, Boissel JP
- ↑ A.P. Fiels, R. Gillet: How to do a meta-analysis,British Journal of Mathematical and Statistical Psychology, 201, 63, 665-694., Field and Gillett
- ↑ site de l'Inserm sur les biostatistiques, Université Paul Sabatier, Toulouse
- ↑ G. Glass: Primary, secondary, and meta-analysis for research, Educational researcher, 1976, Vol5, No10, pp3-8.
- ↑ An introduction to meta-analysis
- ↑ 6,0 et 6,1 R.Slavin: Meta-analysis in education: how has it been used?, Educational researcher, 1984, Vol13,No 8, pp6-15
- ↑ Instructional animation versus static pictures: a meta-analysis, Learning and instruction 2007, 17, pp722-738
- ↑ Minerva, revue d'evidence-based medicine, Méta-analyse sur données individuelles : avantages et limites, 2010; 9(9): 112-112