« Power BI » : différence entre les versions

De EduTech Wiki
Aller à la navigation Aller à la recherche
Aucun résumé des modifications
Ligne 41 : Ligne 41 :
Power BI permet la collaboration entre les utilisateur-rices qui peuvent partager leurs rapports et tableaux de bord avec leurs pairs, permettant ainsi un travail d’équipe autour des analyses et des insights générés.  
Power BI permet la collaboration entre les utilisateur-rices qui peuvent partager leurs rapports et tableaux de bord avec leurs pairs, permettant ainsi un travail d’équipe autour des analyses et des insights générés.  


Grâce à l’onglet “Applications” , il est possible de créer et/ou directement installer un ensemble d'applications spécifiques. Ces dernières “fournissent des insights actionnables et génèrent des résultats métier”. En d'autres termes, ces applications peuvent être vues comme des outils sur mesure qui s’adaptent aux besoins spécifiques recherchés en permettant de mieux comprendre les données, de manière plus ciblée, et de prendre des décisions davantage structurées.  
==== Utilisation d’applications ====
Grâce à l’onglet “Applications”, il est possible de créer et/ou directement installer un ensemble d'applications spécifiques. Ces dernières “fournissent des insights actionnables et génèrent des résultats métier”. En d'autres termes, ces applications peuvent être vues comme des outils sur mesure qui s’adaptent aux besoins spécifiques recherchés en permettant de mieux comprendre les données, de manière plus ciblée, et de prendre des décisions davantage structurées.


Dans le domaine des LA, l’application Agile Education Analytics peut offrir à l'équipe formatrice, aux ingénieur-es pédagogiques, etc. des fonctionnalités avancées telles que l'analyse de l'engagement des apprenant-es, la prédiction de résultats futurs, la segmentation de données par classe ou par matière, l’évaluation des résultats "entre différents groupes d'élèves, et la génération de rapports personnalisés pour évaluer l'efficacité d’un module, etc.  Des exemples sont dir
Dans le domaine des LA, l’application [https://appsource.microsoft.com/en/product/power-bi/agile_analytics.education-analytics?tab=Overview Agile Education Analytics] peut offrir à l'équipe formatrice, aux ingénieur-es pédagogiques, etc. des fonctionnalités avancées telles que l'analyse de l'engagement des apprenant-es, la prédiction de résultats futurs, la segmentation de données par classe ou par matière, l’évaluation des résultats "entre différents groupes d'élèves, et la génération de rapports personnalisés pour évaluer l'efficacité d’un module, etc.  Des [https://www.agile-analytics.com.au/power-bi-solutions/school-and-educations-data-analytics/ exemples] sont visibles directement sur le site de l’Agile Analytics, société qui a créé cette application.


==== Utilisation d’applications ====
==== Implémentation de l’IA ====
L’intégration de l’intelligence artificielle (IA) dans Power BI est là depuis ses débuts. Malgré tout, bien que ce ne soit pas une nouveauté, son rôle et son impact continuent d’évoluer. Nous vous exposons, ci-dessous, quelques exemples non exhaustifs de cette implémentation.
 
Power BI, en tant qu’outil de visualisation de données de Microsoft, tire parti de l’IA à plusieurs niveaux. Tout d’abord, lors de la préparation des données, [https://learn.microsoft.com/en-us/power-query/power-query-what-is-power-query Power Query] utilise des techniques d’IA pour nettoyer et structurer les données. L’assistant de requête automatique suggère des étapes de transformation basées sur le contexte, facilitant ainsi la préparation des données.
 
Ensuite, les rapports et tableaux de bord créés dans Power BI intègrent des visualisations intelligentes. Ces visualisations, telles que les cartes de tendance, les prévisions et les diagrammes de distribution, vue [[Diversité des visualisations possibles|plus hauts]], reposent sur des algorithmes d’IA pour détecter des modèles et des anomalies.
 
De plus, Power BI peut extraire des informations à partir de données textuelles grâce à des techniques de traitement du langage naturel (NLP). En effet, il est possible de créer des rapports basés sur des analyses de texte, par exemple pour surveiller l’engagement global et identifier les domaines où des améliorations sont nécessaires.
 
Aussi, en analysant les données textuelles à grande échelle, Power BI peut identifier des tendances, des motifs récurrents et des insights. Par exemple, il peut détecter les sujets les plus discutés par les étudiant-es dans le forum d’un LMS en faisant ressortir des mots clés, les problèmes récurrents mentionnés, etc.. De cette manière, cela pourrait aider l’équipe formatrice et/ou les ingénieur-es pédagogiques à identifier les domaines où les étudiant-es ont besoin d’aide supplémentaire et d’adapter leurs stratégies pédagogiques, leurs ressources, etc. en conséquence.
 
Enfin, en utilisant des algorithmes d’apprentissage automatique, Machine Learning (ML), Power BI permet de créer des modèles prédictifs qui peuvent aider à anticiper les tendances futures à partir des données fournies. Par exemple, il pourrait aider les personnes en charge de la formation à anticiper les besoins futurs des apprenant-es, à planifier les ressources et à prendre des décisions stratégiques basées sur des modèles prédictifs.


==== Implémentation de l’IA ====
Pour voir un exemple de rapport construit en utilisant l’IA, nous vous invitons à regarder cela sur la page à cet effet, Exemple d’intelligence artificielle.


==Power BI dans LA==
==Power BI dans LA==

Version du 21 mars 2024 à 14:22

Introduction

Résumé

Logo de PowerBI, Microsoft
Logo de PowerBI, Microsoft

Pour la  Période 4 du cours de Méthodo il était demandé de présenter “une méthode ou un outil permettant de conduire une analyse de traces numériques d’interaction”. Ces, traces résultent des interactions des apprenants avec des systèmes informatiques dans le contexte de l'apprentissage numérique et couvrent une large gamme de niveaux de détail, allant de la simple capture d'un clic de souris à des actions plus complexes dans l'environnement numérique (Cherigny et al., 2020 cité dans Sanchez & Paukovics, 2023, p.108). Le choix de notre groupe composé de Dafne, Anh-Thu et Inês, s'est porté sur la plateforme d’analyse de données, Power BI (Power Business Intelligence), développée par Microsoft.

Ainsi, dans cet article, nous verrons, dans un premier temps, les différentes utilisations de cet outil, de manière générale. Puis, nous nous concentrerons sur son usage dans les LA (learning analytics) plus particulièrement.

Enfin, nous conclurons par une analyse critique avec les forces et faiblesses que ce dernier peut présenter.

Learning Analytics

PowerBI

Description générale de Power BI

La plateforme d’analyse de données, Power BI (Bussiness Intelligence), développée par Microsoft aux alentours de 2011, offre aux utilisateur-rices la possibilité de collecter, transformer et visualiser leurs données de manière intuitive et interactive.

Grâce à ses diverses fonctionnalités avancées d’analyse, incluant la combinaison avec l’intelligence artificielle, Power BI permet de créer des rapports et des tableaux de bord dynamiques, facilitant ainsi la prise de décision basée sur les données.

De plus, ses connecteurs variés permettent à Power BI de se connecter à de nombreuses sources de données, qu’elles soient locales, comme un fichier Excel par exemple, ou dans le cloud, offrant ainsi une flexibilité maximale aux utilisateur-rices dans l’exploration et l’exploitation de leurs données.

Ce-tte dernier-ère a également la possibilité de pouvoir collaborer avec ses pairs en temps réel sur un même rapport ou tableau de bord, en apportant des modifications et en ajoutant des commentaires, ce qui peut ainsi faciliter le travail d'équipe et favoriser la prise de décision collaborative.

Principales fonctionnalités générales et exemples d'application aux Learning Analytics

Facilité de connexion aux données

Comme évoqué précédemment, Power BI simplifie la connexion à différentes sources de données, qu’elles soient stockées localement ou dans le cloud. L’utilisateur-rice peut se connecter à des bases de données, des fichiers plats, c’est–à-dire, des fichiers de stockage de données où les informations sont enregistrées sous forme de texte brut comme un fichier .csv.  Il en est de même pour des services cloud tels que Azure SQL Database ou SharePoint. De ce fait, cette flexibilité permet d’agréger et de transformer les données pour créer un modèle cohérent.

Modélisation intuitive des données

L’éditeur de requêtes intégré à Power BI rend la modélisation des données accessibles à tous. Il est possible de nettoyer, enrichir et structurer les données sans compétences techniques avancées. Le langage de requête M ou langage Mashup, utilisé pour manipuler et transformer les données avant de les charger dans l'outil, offre des fonctionnalités pour effectuer des transformations complexes.

Diversité des visualisations possibles

Power BI propose une variété de visualisations telles que des graphiques, des cartes géographiques, des tableaux croisés dynamiques, des jauges, etc. L’utilisateur-rice peut personnaliser ces visualisations pour permettre une compréhension efficiente, à partir de ses données. Cette diversité est encore davantage accrue grâce à l’AppSource qui permet d'accéder à d'autres visuels créés par l'équipe de Microsoft et d’autres collaborateur-trices.

Figure 1 - Montage de captures d'écran qui montre un tableau Excel(gauche) et ses possibles visualisations dans PowerBI (droite).
Figure 1 - Montage de captures d'écran d’un tableau Excel (gauche) et des exemple de ses possibles modélisations dans PowerBI (droite).

Tableaux de bord interactifs

En combinant différentes visualisations sur un tableau de bord, il est possible de créer des rapports interactifs en passant par l’utilisation de filtres, de segments et de mesures pour explorer les données en profondeur. De cette manière, cette interactivité peut aider à l’exploration et la découverte d’insights pertinents.

2020 teacher academic dashboard using Microsoft Power BI. [Tableau de bord académique des enseignants 2020 utilisant Microsoft Power BI.]
Figure 2 - 2020 teacher academic dashboard using Microsoft Power BI. [Tableau de bord académique des enseignants 2020 utilisant Microsoft Power BI.] , par Vigentini, L., Swibel, B., & Hasler, G. (2022). Developing a Growth Learning Data Mindset : A Secondary School Approach to Creating a Culture of Data Driven Improvement. Journal of Learning Analytics, p.96  

Collaboration et partage

Power BI permet la collaboration entre les utilisateur-rices qui peuvent partager leurs rapports et tableaux de bord avec leurs pairs, permettant ainsi un travail d’équipe autour des analyses et des insights générés.

Utilisation d’applications

Grâce à l’onglet “Applications”, il est possible de créer et/ou directement installer un ensemble d'applications spécifiques. Ces dernières “fournissent des insights actionnables et génèrent des résultats métier”. En d'autres termes, ces applications peuvent être vues comme des outils sur mesure qui s’adaptent aux besoins spécifiques recherchés en permettant de mieux comprendre les données, de manière plus ciblée, et de prendre des décisions davantage structurées.

Dans le domaine des LA, l’application Agile Education Analytics peut offrir à l'équipe formatrice, aux ingénieur-es pédagogiques, etc. des fonctionnalités avancées telles que l'analyse de l'engagement des apprenant-es, la prédiction de résultats futurs, la segmentation de données par classe ou par matière, l’évaluation des résultats "entre différents groupes d'élèves, et la génération de rapports personnalisés pour évaluer l'efficacité d’un module, etc.  Des exemples sont visibles directement sur le site de l’Agile Analytics, société qui a créé cette application.

Implémentation de l’IA

L’intégration de l’intelligence artificielle (IA) dans Power BI est là depuis ses débuts. Malgré tout, bien que ce ne soit pas une nouveauté, son rôle et son impact continuent d’évoluer. Nous vous exposons, ci-dessous, quelques exemples non exhaustifs de cette implémentation.

Power BI, en tant qu’outil de visualisation de données de Microsoft, tire parti de l’IA à plusieurs niveaux. Tout d’abord, lors de la préparation des données, Power Query utilise des techniques d’IA pour nettoyer et structurer les données. L’assistant de requête automatique suggère des étapes de transformation basées sur le contexte, facilitant ainsi la préparation des données.

Ensuite, les rapports et tableaux de bord créés dans Power BI intègrent des visualisations intelligentes. Ces visualisations, telles que les cartes de tendance, les prévisions et les diagrammes de distribution, vue plus hauts, reposent sur des algorithmes d’IA pour détecter des modèles et des anomalies.

De plus, Power BI peut extraire des informations à partir de données textuelles grâce à des techniques de traitement du langage naturel (NLP). En effet, il est possible de créer des rapports basés sur des analyses de texte, par exemple pour surveiller l’engagement global et identifier les domaines où des améliorations sont nécessaires.

Aussi, en analysant les données textuelles à grande échelle, Power BI peut identifier des tendances, des motifs récurrents et des insights. Par exemple, il peut détecter les sujets les plus discutés par les étudiant-es dans le forum d’un LMS en faisant ressortir des mots clés, les problèmes récurrents mentionnés, etc.. De cette manière, cela pourrait aider l’équipe formatrice et/ou les ingénieur-es pédagogiques à identifier les domaines où les étudiant-es ont besoin d’aide supplémentaire et d’adapter leurs stratégies pédagogiques, leurs ressources, etc. en conséquence.

Enfin, en utilisant des algorithmes d’apprentissage automatique, Machine Learning (ML), Power BI permet de créer des modèles prédictifs qui peuvent aider à anticiper les tendances futures à partir des données fournies. Par exemple, il pourrait aider les personnes en charge de la formation à anticiper les besoins futurs des apprenant-es, à planifier les ressources et à prendre des décisions stratégiques basées sur des modèles prédictifs.

Pour voir un exemple de rapport construit en utilisant l’IA, nous vous invitons à regarder cela sur la page à cet effet, Exemple d’intelligence artificielle.

Power BI dans LA

Revue de littérature

Méthode

Analyse critique

Forces de Power BI

Forces de Power BI en LA

Limites de Power BI

Ressources pertinentes

Bibliographie