TurtleBlocks

The educational technology and digital learning wiki
Jump to navigation Jump to search

Draft

Introduction

TurtleBlocks is block computer programming language to create designs for laser cutting or acutting plotter. It is based on turtle geometry invented by Papert and the Logo community.

PictureBlocks is a twin project, “which facilitates the construction of complex geometric designs from simple primitive pictures by transforming (rotating, flipping) picturesand composing them (putting one picture above, beside, or over one another).”[1]. It is based on Henderson's picture language based on functional geometry.

Both these environments aim “to introduce non programmers to computational thinking [5] and give them hands-on experience with techniques like procedural abstraction, modularity, and divide/conquer/glue problem solving.” [1]

Notice: There exists a similar language called Turtle Blocks JavaScript, or sometimes as "Turtle Blocks". Formerly called "Turtle Art", it draws colorful art based on snap-together visual programming elements.

Bibliography

Cited references

  1. 1.0 1.1 Franklyn Turbak, Smaranda Sandu, Olivia Kotsopoulos, Emily Erdman, Erin Davis, and Karishma Chadha. Blocks Languages for Creating Tangible Artifacts. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VLHCC 2012), Innsbruck, Austria, Oct. 1--3, 2012.

Other

  • H. Abelson and A. diSessa,Turtle Geometry: the Computer as a Mediumfor Exploring Mathematics. MIT Press, 1981
  • M. Eisenberg, N. Elumeze, L. Buechley, G. Blauvelt, S. Hendrix, andA. Eisenberg, “The homespun museum: Computers, fabrication, and thedesign of personalized exhibits,” inConf. on Creativity & Cognition(C&C’05), 2005, pp. 13–21.
  • M. Eisenberg, A. Eisenberg, L. Buechley, and N. Elumeze, “Computersand physical construction: Blending fabrication into computer scienceeducation,” inInt. Conf. on Frontiers in Education: Computer Science& Computer Engineering (FECS ’08), 2008, pp. 127–133.
  • P. Henderson, “Functional geometry,” Higher Order and Symbolic Computation, vol. 15, no. 4, pp. 349–365, 2002. Preprint ?
  • S. Papert, Mindstorm: Children, Computers, and Powerful Ideas. BasicBooks, 1980.