Trotec Speedy 100R: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
Line 144: Line 144:
==== Plywood ====
==== Plywood ====


Plywood (contreplaqué in French and Sperrholz in German) includes at least three rotated layers of wood. Plywood boards are cheaper to produce than wood and keep their form. However, unlike wood, it is difficult to sand plywood to make it look again once it starts aging.
Plywood (contreplaqué in French and Sperrholz in German) includes at least three rotated layers of wood. Plywood boards are cheaper to produce than wood and keep their form. However, unlike wood, it is difficult to sand plywood to make it look again once it starts aging. According to [https://en.wikipedia.org/wiki/Plywood Wikipedia] (10/2016), Plywood is a sheet material manufactured from thin layers or "plies" of wood veneer that are glued together with adjacent layers having their wood grain rotated up to 90 degrees to one another.
 
According to [https://en.wikipedia.org/wiki/Plywood Wikipedia] (10/2016), Plywood is a sheet material manufactured from thin layers or "plies" of wood veneer that are glued together with adjacent layers having their wood grain rotated up to 90 degrees to one another.


There exist many different types, e.g.
There exist many different types, e.g.
* Softwood plywood, typically used for construction
* Softwood plywood, typically used for construction
* Hardwood plywood {{quotation|is made out of wood from angiosperm trees and used for demanding end uses. Hardwood plywood is characterized by its excellent strength, stiffness and resistance to creep.}} ([https://en.wikipedia.org/wiki/Plywood Wikipedia])
* Hardwood plywood {{quotation|is made out of wood from angiosperm trees and used for demanding end uses. Hardwood plywood is characterized by its excellent strength, stiffness and resistance to creep.}} ([https://en.wikipedia.org/wiki/Plywood Wikipedia])
* Aircraft (or high-strengh) plywood is usually made from mahogany and/or birch.
For laser cutting, there are two challenges: Avoiding defects (e.g. hard nodes) in the inner layers and dealing with rather toxic glue.
Usually, more layers (multi-ply) wood means better quality. According to [http://n-e-r-v-o-u-s.com/blog/?p=6042 the nervous system blog], multiple layers may include more opportunities for "bad" spots to exist and contain more glue and therefore are not more suitable for laser cutting. As result they decided to have their own three layer version built from high quality wood.
There are companies that sell plywood designed specifically for lasering.


=== Polystyrene foams ===
=== Polystyrene foams ===

Revision as of 18:52, 21 September 2016

Introduction

This page will document the Trotec Speedy 100R that TECFA (me) are in the process of acquiring - Daniel K. Schneider (talk) 18:10, 14 September 2016 (CEST)

Specifications of the 100R at TECFA

Speedy100-atmos-compact.jpg

This system easily fits into an office and it just needs two electrical standard plugs.

Speedy 100R

  • 50 W CO2 laser (Iradion tube)
  • 610 x 305 working surface
  • 180 cm/sec speed
  • Box size: 982 x 780 x 457 mm
  • 80 kg
  • Air cooling

ATMOS Compact exhaust fan

  • 815 x 675 x 555 mm
  • 88kg

Official home page:

Outline of the workflow

Preparation steps

(0) Clean the lens (with a microfiber cloth ?)

(1) Switch the machine on

(2) Place work piece

  • open cover
  • Place piece into upper left-hand corner, against horizontal and vertical rules

(3a) Focus laser beam (manually)

  • By default (for the mid-resolving lens) the beam is located 5.08 cm (2.0 in) below the lens.
  • Position the processing head over the work piece
  • Hang the focus tool on the external ring of the working head
  • Then, move up (by little steps) the working table

(3b) Alternatively, focus laser beam with software

  • Click the icon “focus laser” in the Trotec JobControl (make sure that material thickness, table height and lens type are OK !)

Create a graphic

  • Any vector graphic will do, since jobcontrol will work from the print file, i.e. the control software will analyse the postscript and let you configure the print from there.

Preparing the print file

  • Select File Print to access the printer driver
  • In the Job Control software, specify
    • engraving material
    • engraving direction
    • orientation of the work piece
    • orientation of the plate
  • Position the job on the plate with a double click

Print

  • Establish Connection in JobControl
  • Verify Exhaust Ready in Engraver Control (green arrow) in the Control of the JobControl
  • Press START button (green arrow) in Job Control.

Preparation of drawing

Principles:

Input

  • Any 2D CAD or drawing file.
  • For cutting, the stroke of the vectors should be less than than 0.01mm (or 0.1mm?), i.e. hairline width
  • For engraving, the objects should be filled (with or without stroke)
  • Colors should be RGB

Parametrization

  • Engraving depth is varied through the laser power or the speed (energy per area unit principle)
  • For cutting, Hz settings (pulses per second) should be set to low, in particular if materials are flammable.
  • Vector lines are then color coded and for each color one can assign a cutting/engraving parameter. I.e. one could use "red" for cutting" and "greys" for engraving. A print job can include cutting, or engraving, or both.

Read more in:

To learn which parameters are needed, look at published examples, for example:

Materials

A small CO2 laser cutter can cut or engrave a wide variety of materials, e.g. (some) plastics, wood, cardstock, textiles, cork, Delrin, Depron foam.

Never cut anything that includes chlorine. Its gas can badly damage your lungs and the machine. Without ventilation it even could kill. Other materials like ABS or HDPE can catch fire and/or melt.

Read more:

Acrylic (plexi)

Acrylic, better known as Plexiglas and also known as Plexi, or Perspex is probably the easiest material for cutting. There are two different types of Plexiglas – cast and extruded. Cast acrylic seems to work better.

  • Chemical name: PMMA, (in french): polyméthacrylate de méthyle

Cast acrylic (Plexiglas GS)

  • Presents a nicer surface
  • Cutting is more precise
  • becomes white or mat after engraving, i.e. you get a better contrast

Extruded acrylic (Plexiglas XT)

  • is cheaper
  • remains clear
  • doesn't cut as nicely.

In other words, extruded Plexiglas is cheaper but results (both for cutting and engraving) are not great.

Cardstock and paper

Both cut well.

  • Cardstock is "thick paper", e.g. like birthday greeting cards.

Some cardboard (the corrugated one?) on the other hand, can catch fire.

Engineered composite wood

Various variants of "engineered woods" are popular materials in education, since it they cheap and stable. However, they contains glue and other ingredients and may not cut as nicely as solid (non resinous) wood.

MDS (Medium density fiberboard)

According to Wikipedia (10/2016), {{quotation|edium-density fibreboard (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibres, often in a defibrator, combining it with wax and a resin binder, and forming panels by applying high temperature and pressure. MDF is generally denser than plywood.

There exist variants. Again, according to Wikipedia, MDF is typically made up of 82% wood fibre, 9% urea-formaldehyde resin glue, 8% water and 1% paraffin wax and the density is typically between 500 kg/m3 and 1,000 kg/m3.

High-density fiberboard

High-density fiberboard (HDF), also called "hardboard" is, according to Wikipedia (10/2016) similar to particle board and medium-density fiberboard, but is denser and much stronger and harder because it is made out of exploded wood fibers that have been highly compressed. Consequently, the density of hardboard is at least 500 kg/m³ and is usually about 800–1040 kg/m³. It is used in the furniture industry and construction.

HDF works well with laser cutters

Plywood

Plywood (contreplaqué in French and Sperrholz in German) includes at least three rotated layers of wood. Plywood boards are cheaper to produce than wood and keep their form. However, unlike wood, it is difficult to sand plywood to make it look again once it starts aging. According to Wikipedia (10/2016), Plywood is a sheet material manufactured from thin layers or "plies" of wood veneer that are glued together with adjacent layers having their wood grain rotated up to 90 degrees to one another.

There exist many different types, e.g.

  • Softwood plywood, typically used for construction
  • Hardwood plywood “is made out of wood from angiosperm trees and used for demanding end uses. Hardwood plywood is characterized by its excellent strength, stiffness and resistance to creep.” (Wikipedia)
  • Aircraft (or high-strengh) plywood is usually made from mahogany and/or birch.

For laser cutting, there are two challenges: Avoiding defects (e.g. hard nodes) in the inner layers and dealing with rather toxic glue.

Usually, more layers (multi-ply) wood means better quality. According to the nervous system blog, multiple layers may include more opportunities for "bad" spots to exist and contain more glue and therefore are not more suitable for laser cutting. As result they decided to have their own three layer version built from high quality wood.

There are companies that sell plywood designed specifically for lasering.

Polystyrene foams

Can catch fire and may be toxic. Special safety measures must be taken.

E.g. this is probably OK if you have a good ventilation system. It does not contain chlorine, see the MSDS

Cloth

Most "natural" fibers like felt, hemp or cotton cut well.

polyvinyl chloride (PVC)

  • Very dangerous.

Links

Local (Geneva area) shops

  • Migros Materials (local do-it-yourself shop)
  • Polyplast
  • Serex