Digital design and fabrication for ICT education

The educational technology and digital learning wiki
Jump to navigation Jump to search

Introduction

Digital design and fabrication in education is an emerging discipline, e.g. in the UK under the label "Design and technology". In this page will focus on the potential of digital design and fabrication to teach and learn ICT skills.

Contents will include citations and summaries that then could be used for further exploration, research and teaching activities. - Daniel K. Schneider (talk) 16:27, 25 May 2018 (CEST)

Digital design and fabrication from different perspectives

(this section will probably be moved to another article)

Several rationales to introduce digital design and fabrication for learning in general and ICT in particular have been forward, directly or indirectly. Below, we summarize a few strands of thinking.

Maker spaces

Digital design and fabrication usually happens in a makerspace, i.e. a space within which people can create things, usually in two steps. In a first step, some design is digitally created, e.g. with a general or specialized drawing program. In a second step, the design (or parts) of it are made by a digitally controlled machine, e.g. a 3D printer, a laser cutter, a milling machine or an embroidery machine. Educational makerspaces are usually different from fab labs in two respects: They are closed to the public and they lack more expensive (e.g. laser cutting) and dangerous (e.g. milling) machines.

Davee et al. (2015) found 45 different titles for these spaces. “Makerspaces, as a more generic and inclusive term, has increasingly come to represent an extremely wide variety of creative endeavors, tools, demographics, and types of places where making happens. Reflecting this, these spaces go by many names.”. E.g. make space, makery, idea lab, maker art, tinkering space, maker lab, but also design-lab, hands-on-learning space or domain specific such as art center, gallery space, media lab, arts camp. From this variety, the authors conclude: “Evident in these names are a diverse range of making forms, including robotics, music, media, arts, and technology. Various approaches to making are also revealed, including those emphasizing play, design, the arts, science, tinkering, collaboration, informal and hands-on learning, as well as lab and studio approaches.” (Davee et al., 2015). Finally, their review reveals three types of makespaces in libraries, museums, schools and community organizations: dedicated spaces that concentrate tools in a single space, distributed makerspaces that use several spaces and mobile that allow bringing equipment either with carts or full trucks to other places.

Abbie Brown (2015) distinguises a curricular hieryrchy of making activites, derived from her own experience in a year-long 3D printing experience:

  • Print trials involves paramametrizations in the design software, preparing the machine and evaluating the result and its use.
  • Design experiments involves designin an object by modifying an existing one or by creating a new one scratch. I allows both creativity and technological skill development..
  • Engineering tests addresses a production challenge, i.e. a real need that requires a physcial solution, e.g. creating a box for a computer board.

According to Oliver (2016), makerspaces are defined by core tenets, e.g. self-directed learning, serious play, tolerance for failure and retrial, peer collaboration and sharing between experts and novices.

Learning arrangements depend on the context. Sheridan et al. (2014) found in a comparative study of three cases that several adaptive learning arrangements. “One of the distinctive features of all the spaces is the way diverse learning arrangements (e.g., solo exploration, facilitated one-on-one or small group projects, collaborative projects, online forums, and structured classes) often informally evolve to support the projects and goals of the participants.”. Duration of projects ranged from minutes to years, depending on both the nature of the project and the type of makerspace. The same authors observed the emergence of a “We saw evidence in each makerspace of a hybrid model that includes many of the ways of seeing, valuing, thinking, and doing found in participatory cultures yet incorporates pedagogical structures found in more formal studio-based settings, such as demonstration, facilitated workshops, and critique (Hetland et al., 2013)”

Educational robotics

Green at al. 2018, A Look at Robots and Programmable Devices for the K-12 Classroom

Digital design and fabrication for ICT education most often means assembling a robot from a variety of technologies and the programming it. Some technology, e.g. HyperDuino, Makerbit or LEGO Mindstormsare more suitable to combine making and programming while respecting the curriculum, according to Green at al. who created a little taxonomgy that allows classifying use of tools according to educational outcomes. “The curriculum domain focuses on outcomes that support learners using the tools to understand and demonstrate understanding of content (particularly related to content standardsThe making domain is strongly focused on outcomes that are craft-centric (i.e., making a product). The principles of engineering and coding domain focuses on outcomes associated with coding as the curriculum; learning to use the tools is the primary outcome of this domain. The overlapping of the circles combines the outcomes of the different domains.” (Green et al. 2018)

Since both Digital design & fabrication and ICT education are most often associated with engineering and since educational robotics has long standing tradition starting in Papert's constructionism, it is natural that making is frequently associated with robotics. “Making spans a myriad of activities, including cooking, sewing, welding, robotics, painting, printing, and building (Peppler and Bender 2013). Making activities often involve programming and physical computing (e.g., robotics) that creates interactive experiences of sensing and controlling the physical world with computers (O’Sullivan and Igoe 2014).” (Hsu et al. 2017)

Artistic thinking

Sousa and Pileckki (2013) associated artistic thinking with divergent thinking. “in some STEM classrooms, the students are completing experiments that merely confirm a scientific principle that they have already learned. Such an activity is of little interest and hardly challenging. [...] In divergent thinking, on the other hand, the student generates several ideas about possible ways to solve a problem, often by breaking it down into its components and looking for new insights into the problem. After gaining those insights, the student may then use convergent thinking to put the parts back together and solve the problem in a different and unexpected way. [...] Divergent thinking works best with poorly defined problems that have multifaceted solutions. This is the type of thinking that is typical of artistic activities.”. In more simple terms:

  • Convergent thinking solves a problem by applying procedures to known subproblems, i.e. allows to compute a solution with known tools for known problems.
  • Divergent thinking creates subproblems. According to Kraft (2007) cited by Sousa and Pilecki (2013), divergent thinking also seems to change the brain itself, i.e. enhance future creativity.

In a way, converting thinking allows to solve difficult problems whereas divergent thinking allows to solve complex problems, i.e. at Andersen and Krathwohl's create level. Both together allow to solve difficult and complex ones.

Based on Gardner, Sousa and Pileckkit then related artistic domains with intellectural skills: “music requires musical/rhythmic and logical/mathematical skills. Visual art, of course, clearly calls for visual/spatial intelligence. Drama involves verbal/linguistic, bodily/kinesthetic, and interpersonal skills. Dance certainly depends on bodily/kinesthetic, visual/spatial, and interpersonal intelligences. When teachers purposefully incorporate arts-related skills in their instruction, the students’ benefits are abundant.”

Halverson and Sheridan (2014) cited by by Davee, Regalla and Change (2015) point out that maker and arts spaces share a similar architecture. “Many makerspaces resemble studio arts learning environments, where participants work independently or collaboratively with materials to design and make”. However, the study by Sheridan et al. (2015:526) shows that makespaces unite more than other spaces. “Among us authors, we have prior experience in many sites for learning in the making—arts studios, performing arts companies, and game design and digital media labs. Unlike these disciplinary places of practice, makerspaces support making in disciplines that are traditionally separate. [...] This blending of traditional and digital skills, arts and engineering creates a learning environment in which there are multiple entry points to participation and leads to innovative combinations, juxtapositions, and uses of disciplinary knowledge 526Learning in the Making and skill (Brahms & Crowley, 2014).”

Constructivism

“The idea that “teaching thinking” is appropriate in elementary school does have some antecedents but in 1970 it was certainly not current in the mainstream of American education circles. I see the movement that goes under names like “thinking skills” and “critical thinking” as something that came to prominence much later and was supported if not inspired by a wave of hype on the lines of “Logo teaches logical thinking.” Reading “Teaching Children Thinking” should show that my own views were much more complex: Pr ogramming can be used to support learning about thinking, which is a very different claim from saying that in itself it improves thinking skills.” (Papert, 2005)

Bibliography

  • Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching and Assessing: A revision of Bloom's Taxonomy of educational objectives. New York: Longman.
  • Brahms, L., & Crowley, K. (2014, April). Textual analysis of Make Magazine: Core practices of an emerging learning community. Paper presented at the American Educational Research Association Annual Meeting, Philadelphia.
  • Brown, A. (2015). 3D printing in instructional settings: Identifying a curricular hierarchy of activities. TechTrends, 59(5), 16–24. doi: 10.1007/s11528-015-0887-1
  • Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books. Gardner, H. (1993).
  • Kraft, U. (2007). Unleashing creativity. In F. Bloom (Ed.), Best of the brain from Scientific American: Mind, matter, and tomorrow’s brain (pp. 9–19). New York: Dana Press.
  • Oliver, K. M. (2016). Professional development considerations for makerspace leaders, part one: Addressing “what?” and “why?”. TechTrends, 60, 160–166. doi: 10.1007/s11528-016-0028-5. https://doi.org/10.1007/s11528-016-0028-5
  • Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3/4), 366 -367.
  • Sousa, D. A., & Pilecki, T. (2013). From STEM to STEAM: Using brain-compatible strategies to integrate the arts. Thousand Oaks: Corwin.