Digital design and fabrication for ICT education: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{stub}}
== Introduction ==
== Introduction ==


[[Digital design and fabrication in education]] is an emerging discipline, e.g. in the UK under the label "Design and technology". In this page we only focus on the potential of digital design and fabrication to teach and learn ICT skills.
[[Digital design and fabrication in education]] is an emerging discipline, e.g. in the UK under the label "Design and technology". In this page will focus on the potential of digital design and fabrication to teach and learn ICT skills.


Contents will include citations and summaries that then could be used for further exploration, research and teaching activities.
Contents will include citations and summaries that then could be used for further exploration, research and teaching activities.
- [[User:Daniel K. Schneider|Daniel K. Schneider]] ([[User talk:Daniel K. Schneider|talk]]) 16:27, 25 May 2018 (CEST)
- [[User:Daniel K. Schneider|Daniel K. Schneider]] ([[User talk:Daniel K. Schneider|talk]]) 16:27, 25 May 2018 (CEST)


== Digital design and fabrication from different perspectives ==
See also:
* [[Digital design and fabrication bibliography]]


Several rationales to introduce digital design and fabrication for learning in general and ICT in particular have been forward, directly or indirectly. Below, we summarize a few strands of thinking.


=== Educational robotics ===
== Bibliography ==


[[File:green-et-al-2018.svg|thumb|300px|Green at al. 2018, A Look at Robots and Programmable Devices for the K-12 Classroom]]
* Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching and Assessing: A revision of Bloom's Taxonomy of educational objectives. New York: Longman.
Digital design and fabrication for ICT education most often means assembling a robot from a variety of technologies and the programming it. Some technology, e.g. [http://hyperduino.com/hdrobotics.html HyperDuino], [http://makerbit.com Makerbit] or [https://www.lego.com/en-us/mindstorms LEGO Mindstorms]are more suitable to combine making and programming while respecting the curriculum, according to Green at al. who created a little taxonomgy that allows classifying use of tools according to educational outcomes. {{quotation|The ''curriculum  domain'' focuses on outcomes that support learners using the tools to understand and demonstrate understanding of content (particularly related to content standardsThe ''making domain'' is strongly focused on outcomes that are craft-centric (i.e., making a product). The ''principles of engineering and coding domain'' focuses on outcomes associated with coding as the curriculum; learning to use the tools is the primary outcome of this domain. The overlapping of the circles combines the outcomes of the different domains.}} (Green et al. 2018)


Since both Digital design & fabrication and ICT education are most often associated with engineering and since educational robotics has long standing tradition starting in Papert's [[constructionism]], it is natural that making is frequently associated with robotics. {{quotation|Making spans a myriad of activities, including cooking, sewing, welding, robotics, painting, printing, and building (Peppler and Bender 2013). Making activities often involve programming and physical computing (e.g., robotics) that creates interactive experiences of sensing and controlling the physical world with computers (O’Sullivan and Igoe 2014).}} ([https://doi.org/10.1007/s11528-017-0172-6 Hsu et al. 2017)]
* Brady, C.; K. Orton, D. Weintrop, G. Anton, S. Rodriguez and U. Wilensky, "All Roads Lead to Computing: Making, Participatory Simulations, and Social Computing as Pathways to Computer Science," in IEEE Transactions on Education, vol. 60, no. 1, pp. 59-66, Feb. 2017. doi: 10.1109/TE.2016.2622680 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7765145&isnumber=7839305


=== Artistic thinking ===
* Brown, A. (2015). 3D printing in instructional settings: Identifying a curricular hierarchy of activities. TechTrends, 59(5), 16–24. doi: 10.1007/s11528-015-0887-1


Sousa and Pileckki (2013) associated artistic thinking with divergent thinking.  {{quotation|in some STEM classrooms, the students are completing experiments that merely confirm a scientific principle that they have already learned. Such an activity is of little interest and hardly challenging. [...] In divergent thinking, on the other hand, the student generates several ideas about possible ways to solve a problem, often by breaking it down into its components and looking for new insights into the problem. After gaining those insights, the student may then use convergent thinking to put the parts back together and solve the problem in a different and unexpected way. [...] Divergent thinking works best with poorly defined problems that have multifaceted solutions. This is the type of thinking that is typical of artistic activities.}}. In more simple terms:
* Jacobs,Jennifer; Mitchel Resnick, and Leah Buechley. 2014. Dresscode: supporting youth in computational design and making. In Constructionism. Vienna, Austria.
* Convergent thinking solves a problem by applying procedures to known subproblems, i.e. allows to compute a solution with known tools for known problems.
* Divergent thinking creates subproblems. According to Kraft (2007) cited by Sousa and Pilecki (2013), divergent thinking also seems to change the brain itself, i.e. enhance future creativity.
In a way, converting thinking allows to solve difficult problems whereas divergent thinking allows to solve complex problems, i.e. at Andersen and Krathwohl's ''create level''. Both together allow to solve difficult and complex ones.


Based on Gardner, Sousa and Pileckkit then related artistic domains with intellectural skills: {{quotation|music requires musical/rhythmic and logical/mathematical skills. Visual art, of course, clearly calls for visual/spatial intelligence. Drama involves verbal/linguistic, bodily/kinesthetic, and interpersonal skills. Dance certainly depends on bodily/kinesthetic, visual/spatial, and interpersonal intelligences. When teachers purposefully incorporate arts-related skills in their instruction, the students’ benefits are abundant.}}
* Jacobs, J., Brandt, J., Mech, R., & Resnick, M. (2018, April). Extending Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 590). ACM.


Halverson and Sheridan  (2014) cited by by Davee, Regalla and Change (2015) point out that maker and arts spaces share a similar architecture. “Many makerspaces resemble studio arts learning environments, where participants work independently or collaboratively with materials to design and make”
* Jacobs, Jennifer and Leah Buechley. 2013. Codeable Objects: Computational Design and Digital Fabrication for Novice Programmers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 1589–1598.


=== Constructivism ===
* Kanada Yaususi, (2016) "3D printing of generative art using the assembly and deformation of direction-specified parts", Rapid Prototyping Journal, Vol. 22 Issue: 4, pp.636-644, https://doi.org/10.1108/RPJ-01-2015-0009


{{quotation|The idea that “teaching thinking” is appropriate in elementary school does have some antecedents but in 1970 it was certainly not current in the mainstream of American education circles. I see the movement that goes under names like “thinking skills” and “critical thinking” as something that came to prominence much later and was supported if not inspired by a wave of hype on the lines of “Logo teaches logical thinking.” Reading “Teaching Children Thinking” should show that my own views were much more complex: Pr ogramming can be used to support learning about thinking, which is a very different claim from saying that in itself it improves thinking skills.}} ([https://www.learntechlib.org/p/21845/ Papert, 2005])
* Kumpulainen, Kristiina (2018). Makerspaces – Why They Are Important For Digital Literacy Education, in Marsh, J., Kumpulainen, K., Nisha, B., Velicu, A., Blum-Ross, A., Hyatt, D., Jónsdóttir, S.R., Levy, R., Little, S., Marusteru, G., Ólafsdóttir, M.E., Sandvik, K., Scott, F., Thestrup, K., Arnseth, H.C., Dýrfjörð, K., Jornet, A., Kjartansdóttir, S.H., Pahl, K., Pétursdóttir, S. and Thorsteinsson, G. (2017) Makerspaces in the Early Years: A Literature Review. University of Sheffield: MakEY Project. ISBN: 9780902831506 http://makeyproject.eu/wp-content/uploads/2017/02/Makey_Literature_Review.pdf


== Bibliography ==
* Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3/4), 366 -367.


* Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching and Assessing: A revision of Bloom's Taxonomy of educational objectives. New York: Longman.
* Solin, Pavel. The International Journal for Technology in Mathematics Education, suppl. ESCO 2016 SPECIAL ISSUE; Plymouth Vol. 24, Iss. 4, (Oct-Dec 2017): 191-198.  


* Davee, S., Regalla, L., & Chang, S. (2015, May). Makerspaces: Highlights of select literature. Retrieved from http://makered.org/wp-content/uploads/2015/08/Makerspace-Lit-Review-5B.pdf
* Sousa, D. A., & Pilecki, T. (2013). From STEM to STEAM: Using brain-compatible strategies to integrate the arts. Thousand Oaks: Corwin.


* Green, T., Wagner, R., & Green, J. (2018). A Look at Robots and Programmable Devices for the K-12 Classroom. TechTrends. https://doi.org/10.1007/s11528-018-0297-2
* Yokana, L. (2015). Creating an authentic maker education rubric. Edutopia. Retrieved from: http://www.edutopia.org/blog/creating-authentic-maker-education-rubric-lisa-yokana.


* Hsu, YC., Baldwin, S. & Ching, YH. Learning through Making and Maker Education, TechTrends (2017) 61: 589. https://doi.org/10.1007/s11528-017-0172-6
[[category:Fab lab]]
 
* Kraft, U. (2007). Unleashing creativity. In F. Bloom (Ed.), Best of the brain from Scientific American: Mind, matter, and tomorrow’s brain (pp. 9–19). New York: Dana Press.
 
* Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3/4), 366 -367.
 
* Sousa, D. A., & Pilecki, T. (2013). From STEM to STEAM: Using brain-compatible strategies to integrate the arts. Thousand Oaks: Corwin.

Latest revision as of 12:57, 1 June 2018

Draft

Introduction

Digital design and fabrication in education is an emerging discipline, e.g. in the UK under the label "Design and technology". In this page will focus on the potential of digital design and fabrication to teach and learn ICT skills.

Contents will include citations and summaries that then could be used for further exploration, research and teaching activities. - Daniel K. Schneider (talk) 16:27, 25 May 2018 (CEST)

See also:


Bibliography

  • Anderson, L. W., & Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching and Assessing: A revision of Bloom's Taxonomy of educational objectives. New York: Longman.
  • Brown, A. (2015). 3D printing in instructional settings: Identifying a curricular hierarchy of activities. TechTrends, 59(5), 16–24. doi: 10.1007/s11528-015-0887-1
  • Jacobs,Jennifer; Mitchel Resnick, and Leah Buechley. 2014. Dresscode: supporting youth in computational design and making. In Constructionism. Vienna, Austria.
  • Jacobs, J., Brandt, J., Mech, R., & Resnick, M. (2018, April). Extending Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 590). ACM.
  • Jacobs, Jennifer and Leah Buechley. 2013. Codeable Objects: Computational Design and Digital Fabrication for Novice Programmers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA, 1589–1598.
  • Kanada Yaususi, (2016) "3D printing of generative art using the assembly and deformation of direction-specified parts", Rapid Prototyping Journal, Vol. 22 Issue: 4, pp.636-644, https://doi.org/10.1108/RPJ-01-2015-0009
  • Kumpulainen, Kristiina (2018). Makerspaces – Why They Are Important For Digital Literacy Education, in Marsh, J., Kumpulainen, K., Nisha, B., Velicu, A., Blum-Ross, A., Hyatt, D., Jónsdóttir, S.R., Levy, R., Little, S., Marusteru, G., Ólafsdóttir, M.E., Sandvik, K., Scott, F., Thestrup, K., Arnseth, H.C., Dýrfjörð, K., Jornet, A., Kjartansdóttir, S.H., Pahl, K., Pétursdóttir, S. and Thorsteinsson, G. (2017) Makerspaces in the Early Years: A Literature Review. University of Sheffield: MakEY Project. ISBN: 9780902831506 http://makeyproject.eu/wp-content/uploads/2017/02/Makey_Literature_Review.pdf
  • Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3/4), 366 -367.
  • Solin, Pavel. The International Journal for Technology in Mathematics Education, suppl. ESCO 2016 SPECIAL ISSUE; Plymouth Vol. 24, Iss. 4, (Oct-Dec 2017): 191-198.
  • Sousa, D. A., & Pilecki, T. (2013). From STEM to STEAM: Using brain-compatible strategies to integrate the arts. Thousand Oaks: Corwin.