Tablet: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
Line 6: Line 6:


==Affordances==
==Affordances==
Tablet PCs and, more recently, touch tablets improved learning in a number of areas, specifically with increased levels of motivation and engagement (Aksu, 2014). Connell, Bayliss, and Farmer (2012) reported that undergraduate students preferred tablets for reading text over e-readers and paper printouts because they were easier to read.  This ease of use transferred beyond reading text to creative activities, such as drawing by young children (Couse & Chen, 2010), the discussion of math proofs by distance education learners (Galligan, Hobohn, & Loch, 2012), or the creation of teaching materials by student-teachers (Miller & Cinnamon, 2013). Learners were also able to quickly and easily find information with a tablet in hand. While this could also be achieved with a laptop, the particular affordance of tablets in this area lay in their portability (Twining & Evans, 2005). Students used tablets to access information or to create artefacts without having to juggle a laptop or be tethered to a wall, and this granted seamless learning in the classroom without detracting from face-to-face activities (Li & Pow, 2011). It also allowed for greater interaction between students and teachers as well as with their peers than traditional computers had in the past (Galligan et al, 2012). Mang and Wardley (2013) found that they reduced social media distractions since tablets did not use the same multiple window interface as traditional computers or laptops. The idea of seamless learning was extended to the seamlessness of learning that a tablet’s portability can offer between formal (classroom) and informal (outside of the classroom) learning spaces. Coupled with a tablet’s Wi-Fi or 3G access, this also allowed for greater collaboration (Park & Burford, 2013) and more instances of anytime, anywhere learning than other computers as users were able to access their learning networks wherever they were (Pergrum et al, 2013). In a 2014 study by Reychav and Wu, the authors discovered the tablet’s multimedia learning environment maximized perceived effects of learning and performance in the field for young driving students. Weitz et al’s (2006) results demonstrated a strong positive perception of the tablet’s learning and teaching potential among university faculty.
Tablets have increased motivation and engagement in users (Aksu, 2014). Connell, Bayliss, and Farmer (2012) reported that undergraduate students preferred tablets for reading text over e-readers and paper printouts because they were easier to read.  This ease of use transferred to creative activities, such as drawing by young children (Couse & Chen, 2010), the discussion of math proofs by distance education learners (Galligan, Hobohn, & Loch, 2012), or the creation of teaching materials by student-teachers (Miller & Cinnamon, 2013). Learners were also able to quickly and easily find information with a tablet in hand and the particular affordance of tablets in this area lay in their portability (Twining & Evans, 2005). Students used tablets to access information or to create artefacts without having to juggle a laptop or be tethered to a wall, and this granted seamless learning in the classroom without detracting from face-to-face activities (Li & Pow, 2011). It also allowed for greater interaction between students and teachers as well as with their peers than laptops (Galligan et al, 2012). Mang and Wardley (2013) found that they reduced social media distractions since tablets did not use the same multiple window interface as traditional computers or laptops. Seamless learning also occurred between formal and informal learning spaces. Coupled with a tablet’s Wi-Fi or 3G access, this also allowed for greater collaboration (Park & Burford, 2013) and more instances of anytime, anywhere learning than other computers as users were able to access their learning networks wherever they were (Pergrum et al, 2013). Reychav and Wu (2014) discovered that the tablet’s multimedia learning environment heightened perceived effects of learning and performance in the field for young driving students. Weitz et al’s (2006) results demonstrated a strong positive perception of the tablet’s learning and teaching potential among university faculty.


Twining and Evans (2005) reported that the tablet was a personal learning device due to its interactive screen capabilities and its opportunities were maximized when the user owned the device him or herself (Fabian & MacLean, 2014). The ability to touch the screen and manipulate what was seen proved to be more than just easy or fun but also enhanced learning (Schneps, Ruel, Sonnert, Dussault, Griffin, & Sadler, 2014). Kosheleva et al (2007) also discovered this to be true when using a stylus as compared to a mouse in earlier tablets. The gesture-based interface of newer tablets triggered neurocognitive capabilities through embodiment (Schneps et al, p. 275). They discovered that by being able to touch the screen and zoom in on images from outer space, high school students better understood the widely mistaken concept of astronomical scale. They posited that a tablet’s portability, gesture-based interface, and multimedia learning environment offered the potential for learning and understanding activities that had not been previously possible with other technologies.
Twining and Evans (2005) reported that the tablet was a personal learning device due to its interactive screen capabilities and its opportunities were maximized when the user owned the device him or herself (Fabian & MacLean, 2014). The ability to touch the screen and manipulate what was seen proved to be more than just easy or fun but also enhanced learning (Schneps, Ruel, Sonnert, Dussault, Griffin, & Sadler, 2014). Kosheleva et al (2007) also discovered this to be true when using a stylus as compared to a mouse in earlier tablets. The gesture-based interface of newer tablets triggered neurocognitive capabilities through embodiment (Schneps et al, p. 275). They discovered that by being able to touch the screen and zoom in on images from outer space, high school students better understood the widely mistaken concept of astronomical scale. They posited that a tablet’s portability, gesture-based interface, and multimedia learning environment offered the potential for learning and understanding activities that had not been previously possible.


==Constraints==
==Constraints==

Revision as of 01:47, 10 June 2014

Tablet

Patricia Rosen, Memorial University of Newfoundland

Definitions and background

Tablet computers first made an appearance as far back as the 1980s as convertible laptops or standalone slates that used Windows operating systems (Coniam, 2013). The novelty of these early tablet pcs was their portability, their connectedness via Wi-Fi and, more notably, their stylus and digital ink handwriting recognition technology that allowed users to write directly onto the tablet (Reins, 2007). These machines were expensive compared to other types of computers (Weitz, Wachsmuth, & Mirliss, 2006). Tablet PCs were first used in education in middle and high schools and gradually made their way into primary and post-secondary institutions (Couse & Chen, 2010). Since 2010, with the introduction of Apple’s touch tablet computer, the iPad, and the since proliferation of other touch tablets, they became increasingly recognized as compelling learning tools for students and teachers (Li et al, 2010). Fabian and MacLean (2014) noted a growing interest in their potential as learning tools. Later tablets had touch screens that were large enough for convenience of use yet small enough for ease of portability as well as for their multimedia capabilities via numerous apps and their wifi or 3G connectivity (Chen, 2013).

Affordances

Tablets have increased motivation and engagement in users (Aksu, 2014). Connell, Bayliss, and Farmer (2012) reported that undergraduate students preferred tablets for reading text over e-readers and paper printouts because they were easier to read. This ease of use transferred to creative activities, such as drawing by young children (Couse & Chen, 2010), the discussion of math proofs by distance education learners (Galligan, Hobohn, & Loch, 2012), or the creation of teaching materials by student-teachers (Miller & Cinnamon, 2013). Learners were also able to quickly and easily find information with a tablet in hand and the particular affordance of tablets in this area lay in their portability (Twining & Evans, 2005). Students used tablets to access information or to create artefacts without having to juggle a laptop or be tethered to a wall, and this granted seamless learning in the classroom without detracting from face-to-face activities (Li & Pow, 2011). It also allowed for greater interaction between students and teachers as well as with their peers than laptops (Galligan et al, 2012). Mang and Wardley (2013) found that they reduced social media distractions since tablets did not use the same multiple window interface as traditional computers or laptops. Seamless learning also occurred between formal and informal learning spaces. Coupled with a tablet’s Wi-Fi or 3G access, this also allowed for greater collaboration (Park & Burford, 2013) and more instances of anytime, anywhere learning than other computers as users were able to access their learning networks wherever they were (Pergrum et al, 2013). Reychav and Wu (2014) discovered that the tablet’s multimedia learning environment heightened perceived effects of learning and performance in the field for young driving students. Weitz et al’s (2006) results demonstrated a strong positive perception of the tablet’s learning and teaching potential among university faculty.

Twining and Evans (2005) reported that the tablet was a personal learning device due to its interactive screen capabilities and its opportunities were maximized when the user owned the device him or herself (Fabian & MacLean, 2014). The ability to touch the screen and manipulate what was seen proved to be more than just easy or fun but also enhanced learning (Schneps, Ruel, Sonnert, Dussault, Griffin, & Sadler, 2014). Kosheleva et al (2007) also discovered this to be true when using a stylus as compared to a mouse in earlier tablets. The gesture-based interface of newer tablets triggered neurocognitive capabilities through embodiment (Schneps et al, p. 275). They discovered that by being able to touch the screen and zoom in on images from outer space, high school students better understood the widely mistaken concept of astronomical scale. They posited that a tablet’s portability, gesture-based interface, and multimedia learning environment offered the potential for learning and understanding activities that had not been previously possible.

Constraints

Links

Works Cited