3D printers in education: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
Line 7: Line 7:
== Teaching of design and fabrication ==
== Teaching of design and fabrication ==


.....
{{quotation|Designing—giving form to new objects or environments—is largely a question of anticipating the workings of spatial and material environments, which can become ‘reality’ only by being built. Until ‘realized’, a design is essentially a figment of the designer's imagination, although his or her ideas may be laid down and conveyed to others via specialized design media. In this way, impressions of the design may be shared with clients, colleagues or other ‘actors’ in the design process.}} (Breen et al., 2003).


== Models for teaching ==
== Models for teaching ==
Line 13: Line 13:
[http://3dprintables.org/ 3D Printables wiki] (Hod Lipson et al.) argue that quotation|There is ample evidence that learning is enhanced through active experiences, especially when relating to spatial and physical concepts that are difficult to visualize and understand abstractly. Traditionally, dedicated educators would handcraft physical models to help demonstrate educational concepts, but such models are becoming increasingly rare due to the resources, skill and effort involved in making them, and the advent of cheaper and more flexible virtual models and computer simulations. Physical models can also aid visually impaired persons and help alleviate learning disparities associated with spatial reasoning. With the popularization of 3D-printing technologies, however, fabrication of physical models is becoming increasingly simple and readily accessible, thus enabling resurgence of this important educational medium.}} (retrieved 18:00, 7 April 2010 (UTC))
[http://3dprintables.org/ 3D Printables wiki] (Hod Lipson et al.) argue that quotation|There is ample evidence that learning is enhanced through active experiences, especially when relating to spatial and physical concepts that are difficult to visualize and understand abstractly. Traditionally, dedicated educators would handcraft physical models to help demonstrate educational concepts, but such models are becoming increasingly rare due to the resources, skill and effort involved in making them, and the advent of cheaper and more flexible virtual models and computer simulations. Physical models can also aid visually impaired persons and help alleviate learning disparities associated with spatial reasoning. With the popularization of 3D-printing technologies, however, fabrication of physical models is becoming increasingly simple and readily accessible, thus enabling resurgence of this important educational medium.}} (retrieved 18:00, 7 April 2010 (UTC))


This 3D printables wiki distinguishes between Kinematics Models, Mathematical Models, Molecular Biology Models, Chemistry Models, Archeological Models, Aeronautical Models and Anatomical Models.
This 3D printables wiki distinguishes between Kinematics Models, Mathematical Models, Molecular Biology Models, Chemistry Models, Archeological Models, Aeronautical Models and Anatomical Models (e.g. Messmer et al. 2006).


== Teaching of 3D graphics and programming ==
== Teaching of 3D graphics and programming ==
Line 45: Line 45:
== Bibliography ==
== Bibliography ==


* Mary E. Knapp, Ryan Wolff, Hod Lipson (2008). Developing printable content: A repository for printable teaching models, Proceedings of the 2008 [http://utwired.engr.utexas.edu/lff/symposium/ Solid Freeform Fabrication Symposium].  
* Andersen, D; C. Bennett, P. Huynh, L. Rassbach, S. Reardon, and M. Eisenberg (2005). Printing Out Trees: Toward the Design of Tangible Objects for Education, Proceedings of Education and Technology. [http://l3d.cs.colorado.edu/~ctg/pubs/ICET05.pdf PDF].
 
Phil Anderson and Cherie Ann Sherman (2007). A discussion of new business models for 3D printing, ''International Journal of Technology Marketing'', Volume 2, Number 3, 280 - 294.
 
* Breen Jack, Robert Nottrot, Martijn Stellingwerff (2003). Tangible virtuality--perceptions of computer-aided and physical modelling, Automation in Construction, Volume 12, Issue 6, Design e-ducation: Connecting the Real and the Virtual, November 2003, Pages 649-653, ISSN 0926-5805, [http://dx.doi.org/10.1016/S0926-5805(03)00053-0. DOI: 10.1016/S0926-5805(03)00053-0]
 
* Charlesworth, Chris (2007). Student Use of Virtual and Physical Modelling in Design Development - An Experiment in 3D Design Education,  The Design Journal, Volume 10, Number 1, March 2007 , pp. 35-45(11). [http://www.ingentaconnect.com/content/berg/dsgj/2007/00000010/00000001/art00005 Abstract]
 
* Cliff Dave; Claire O'Malley and Josie Taylor (2008). Future issues in socio-technical change for UK education, Beyond Current Horizons, Report commissioned by the UK Department for Children, Schools and Families. [http://www.beyondcurrenthorizons.org.uk/wp-content/uploads/socio_technical_change_revised_disclaimerv2.pdf PDF]
 
* Cohen, H.G. (1983). A comparison of the affect of two types of student behavior with manipulatives on the development of projective spatial structures. ''Journal of Research in Science Teaching'', 20(9), 875-883
 
* Dlodlo, Nomusa and Ronald Noel Beyers (2009). The Experiences of South-African High-School Girls in a Fab Lab Environment, Proceedings Of World Academy Of Science, Engineering And Technology Volume 37 January 2009 Issn 2070-3740. [http://www.waset.org/pwaset/v37/v37-80.pdf PDF Reprint]
 
* Jensen, Daniel; Chris Randell, John Feland and Martin Bowe (2002). A Study Of Rapid Prototyping For Use In Undergraduate Design Education, Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition. [https://www.usafa.edu/df/dfem/research_info/ed_research/rp.pdf PDF]
 
* Knapp M., Wolff R., Lipson H. (2008), "Developing printable content: A repository for printable teaching models", Proceedings of the 19th Annual Solid Freeform Fabrication Symposium, Austin TX, Aug 2008. [http://ccsl.mae.cornell.edu/papers/SFF08_Knapp.pdf PDF].
 
* Eisenberg, M. and Buechley, L. (2008). Pervasive Fabrication:  Making Construction Ubiquitous in Education Journal of Software, 3:4, pp. 62-68. [http://l3d.cs.colorado.edu/~ctg/pubs/JSoft08.pdf PDF]
 
* Jensen, Daniel; Chris Randell, John Feland, Martin Bowe (2002). A Study Of Rapid Prototyping For Use In Undergraduate Design Education, Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition. [http://www.usafa.af.mil/df/dfem/research_info/ed_research/rp.pdf PDF]
 
* Lillard, A. and Else-Quest, N. (2006) The Early Years: Evaluating Montessori Education Science, Vol. 313. no. 5795, pp. 1893 - 1894
 
* Messmer Peter, Felix Matthews, Augustinus Ludwig Jacob, Ron Kikinis, Pietro Regazzoni and Hansruedi Noser (2006), A CT Database for Research, Development and Education: Concept and Potential, ''Journal of Digital Imaging'' 20 (1), 17-22. [http://www.springerlink.com/content/967572153101h74q/ Abstract/PDF/HTML]
 
* Shih, Naai-Jung (2006). RP-aided computer modeling for architectural education, Computers & Graphics, Volume 30, Issue 1, February 2006, Pages 137-144, ISSN 0097-8493, http://dx.doi.org/10.1016/j.cag.2005.10.014 DOI: 10.1016/j.cag.2005.10.014]
 
* Wohlers, T. (2005). 3D Printing in Education: How High Schools, Colleges, and Universities Leverage 3D Printing Technology.â Time-Compression Technologies, Sept/Oct 2005. [http://wohlersassociates.com/SepOct05TCT3dp.htm HTML]


[[Category: RapMan]]
[[Category: RapMan]]

Revision as of 15:10, 8 April 2010

Draft

This article or section is currently under construction

In principle, someone is working on it and there should be a better version in a not so distant future.
If you want to modify this page, please discuss it with the person working on it (see the "history")

Introduction

Teaching of design and fabrication

“Designing—giving form to new objects or environments—is largely a question of anticipating the workings of spatial and material environments, which can become ‘reality’ only by being built. Until ‘realized’, a design is essentially a figment of the designer's imagination, although his or her ideas may be laid down and conveyed to others via specialized design media. In this way, impressions of the design may be shared with clients, colleagues or other ‘actors’ in the design process.” (Breen et al., 2003).

Models for teaching

3D Printables wiki (Hod Lipson et al.) argue that quotation|There is ample evidence that learning is enhanced through active experiences, especially when relating to spatial and physical concepts that are difficult to visualize and understand abstractly. Traditionally, dedicated educators would handcraft physical models to help demonstrate educational concepts, but such models are becoming increasingly rare due to the resources, skill and effort involved in making them, and the advent of cheaper and more flexible virtual models and computer simulations. Physical models can also aid visually impaired persons and help alleviate learning disparities associated with spatial reasoning. With the popularization of 3D-printing technologies, however, fabrication of physical models is becoming increasingly simple and readily accessible, thus enabling resurgence of this important educational medium.}} (retrieved 18:00, 7 April 2010 (UTC))

This 3D printables wiki distinguishes between Kinematics Models, Mathematical Models, Molecular Biology Models, Chemistry Models, Archeological Models, Aeronautical Models and Anatomical Models (e.g. Messmer et al. 2006).

Teaching of 3D graphics and programming

-.....

Support for learning scenarios

.....

Educational play worlds

.....

Links

Other 3D-printing repositories

Repositories

Bibliography

  • Andersen, D; C. Bennett, P. Huynh, L. Rassbach, S. Reardon, and M. Eisenberg (2005). Printing Out Trees: Toward the Design of Tangible Objects for Education, Proceedings of Education and Technology. PDF.

Phil Anderson and Cherie Ann Sherman (2007). A discussion of new business models for 3D printing, International Journal of Technology Marketing, Volume 2, Number 3, 280 - 294.

  • Breen Jack, Robert Nottrot, Martijn Stellingwerff (2003). Tangible virtuality--perceptions of computer-aided and physical modelling, Automation in Construction, Volume 12, Issue 6, Design e-ducation: Connecting the Real and the Virtual, November 2003, Pages 649-653, ISSN 0926-5805, DOI: 10.1016/S0926-5805(03)00053-0
  • Charlesworth, Chris (2007). Student Use of Virtual and Physical Modelling in Design Development - An Experiment in 3D Design Education, The Design Journal, Volume 10, Number 1, March 2007 , pp. 35-45(11). Abstract
  • Cliff Dave; Claire O'Malley and Josie Taylor (2008). Future issues in socio-technical change for UK education, Beyond Current Horizons, Report commissioned by the UK Department for Children, Schools and Families. PDF
  • Cohen, H.G. (1983). A comparison of the affect of two types of student behavior with manipulatives on the development of projective spatial structures. Journal of Research in Science Teaching, 20(9), 875-883
  • Dlodlo, Nomusa and Ronald Noel Beyers (2009). The Experiences of South-African High-School Girls in a Fab Lab Environment, Proceedings Of World Academy Of Science, Engineering And Technology Volume 37 January 2009 Issn 2070-3740. PDF Reprint
  • Jensen, Daniel; Chris Randell, John Feland and Martin Bowe (2002). A Study Of Rapid Prototyping For Use In Undergraduate Design Education, Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition. PDF
  • Knapp M., Wolff R., Lipson H. (2008), "Developing printable content: A repository for printable teaching models", Proceedings of the 19th Annual Solid Freeform Fabrication Symposium, Austin TX, Aug 2008. PDF.
  • Eisenberg, M. and Buechley, L. (2008). Pervasive Fabrication: Making Construction Ubiquitous in Education Journal of Software, 3:4, pp. 62-68. PDF
  • Jensen, Daniel; Chris Randell, John Feland, Martin Bowe (2002). A Study Of Rapid Prototyping For Use In Undergraduate Design Education, Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition. PDF
  • Lillard, A. and Else-Quest, N. (2006) The Early Years: Evaluating Montessori Education Science, Vol. 313. no. 5795, pp. 1893 - 1894
  • Messmer Peter, Felix Matthews, Augustinus Ludwig Jacob, Ron Kikinis, Pietro Regazzoni and Hansruedi Noser (2006), A CT Database for Research, Development and Education: Concept and Potential, Journal of Digital Imaging 20 (1), 17-22. Abstract/PDF/HTML
  • Shih, Naai-Jung (2006). RP-aided computer modeling for architectural education, Computers & Graphics, Volume 30, Issue 1, February 2006, Pages 137-144, ISSN 0097-8493, http://dx.doi.org/10.1016/j.cag.2005.10.014 DOI: 10.1016/j.cag.2005.10.014]
  • Wohlers, T. (2005). 3D Printing in Education: How High Schools, Colleges, and Universities Leverage 3D Printing Technology.â Time-Compression Technologies, Sept/Oct 2005. HTML