CAS Digital Learning in Emergencies (2022-23)/module4-Taam
Openness in education and science: the case of cognitive neuroscience research labs
Preamble
This page was written as part fulfillment of the Course 'Certificate of Advanced Studies in Digital Learning in Emergencies (2022-23)' taught by University of Geneva. The course has four Modules of which the Module 4 was about Open Education. This page was the capstone assignment of Module 4 taught by Professor Barbara Class of TECFA. I have chosen the topic of research in cognitive neuroscience based on my interest, as an educationist, in the field. By this choice, I aim to effectively use the time of the Module in finding out how open this relatively recent school of scientific and educational research, hoping this appealing notion of education and science openness is in practice to a great extent. This will be very helpful for scholars like me from developing countries where libraries are poor in science and education resources in general and in up to date resources in particular. Online resources, on the other hand, are either closed or beyond affordability. Therefore, coming up with an initial list of cognitive neuroscience labs and how open their contents, tools, practices and results will be a good start to build on for one's journey of learning in this interesting area of research for every educator and educationist.
Introduction
Education has never stopped accompanying humankind since it came into being. Only have its form, content, context and systematicity kept developing in diverse ways, from as simple as parents-child learning settings to very sophisticated systems seen in modern and recent histories of formal general and higher, non-formal and informal settings.
Development towards more sophistication seems to have had been at the expense of the general public, leading to closed and elitist systems. Class (2022, p.2) traces back some reaction to such systems in people’s call for “public lectures on Dante” in 1373 in Florence in Italy, which heralded the birth of European universities. With time, population growth, development and sophistication never stop, which gives rise to more need for organisation and systemisation and more stress on resources. Logically, the balance will need then to reduce size of your targeting in order to reduce pressure on resources while continuing sophisticated development. In education, this meant its closure on fewer people, leaving many of them behind. For instance, higher education institutions “are, for the most part, closed or isolated systems,” (Moisey (1984, p. 14). This will continue for some time before people and societies feel its negative consequences and the drive to get up and call for openness, like calls for open learning. It was “[o]riginally intended to increase democratization of higher education in terms of respect for individual differences and equal opportunity, (Ibid, p. 5). Then came the calls for “open education” “during the 1960s and 1970s, [on the grounds of] heated political debates about the power of education over children took place and people like Freire lobbied for ‘Pedagogy of the Oppressed’ (Deimann & Sloep, 2013, p. 18). With the turn of the century, the ‘open education’ movement continued. This time, “digital technology caused a revitalisation in the beginning of the 21st century […] in favour of the unrestricted proliferation of education for everybody around the globe,” (Ibid, p.18). As we entered the third decade of the century, the movement gained more momentum with more ‘openness’ terms coined. “Open Access, Open Content, Open Courses, Open Data, Open Design, Open Knowledge, Open Learning, Open License, Open Scholarship, Open Source, Open Standards, Open Teaching and Open Universities are given as examples of evolving-adaptive open approaches,” (Werth & Williams, 2022, p.5). International organisations and known universities like UNESCO and Massachusetts Institute of Technology (MIT) and Oxford University, for example, have emerged to endorse the ‘openness’ in education as well as science. Free online course materials (OpenCourseWare) and open GigaScience journal are practical endorsements by the two education and science institutions. As to UNESCO, following a number of international conferences, it issued two “Recommendations” of Open Educational Resources (OER) in 2019 (UNESCO, 2022) and Open Science in 2021 (UNESCO, 2021). With more newcomers into the movement comes higher terminological debate. The two UNSECO’s Recommendations have helped defining ‘openness,’ there still questions that are yet to be settled. According to class 92022, p. 5), “the question remains: where should scholars put emphasis today? On the “Open” aspect? On the “Education” aspect? On “Open Education” as a construct and potential means of renewing education?” Atkins et al. (2007) see answers to this and similar questions in the future. To them, “[o]penness” is complex and not a black-and-white issue—a spectrum of degrees of resource openness is developing. The future holds opportunities and challenges for enriching and exploiting this spectrum,” (p. 28). We are not going to engage into such debate due the limite, practical purpose of this paper, as will be presented below. It should suffice for this purpose to add that research is an arena of science. Research, on the other hand, does not start from scratch, neither does it start by uneducated people. The research is initiated from knowledge acquired by researchers in school and university, i.e. through education. At the same time, research produces knowledge for learners and instructors in school and university, that is for education. Thus, it is a continuum in which education leads to science and science serves education in what Class (2022) describe as "knowledge society." As put by Inserm, “beginning from what is already known [education], scientists ask questions, construct hypotheses, and develop experiments that will generate new knowledge [education]” (Inserm, 2021). |
Having said that, the following sections will put the 'openness' notion to the test in an interesting, relatively recent and quickly developing field of research, that is the cognitive neuroscience. The project is to visit a sample of its labs to find out how open they are based on a number of criteria derived from literature and outlined in the openness assessment framework below.
Overall objective
Be aware of Open Education and Open Science concepts and practices
Learning outcomes
- Identify key concepts and practices of open movement.
- Appraise examples of research practices from the openness perspective.
Method
The paper will explore how a convenient sample of research (neuroscience) labs are open. ‘Open’ here can operationally be defined as in the shown in the Openness Assessment Framework below.
The sample will be those labs returned from search using the main Internet search engines of Google and MS Bing to search for cognitive neuroscience research labs. It is a scientific field that should have no security and financial implications that may justify access restrictions.
Methodological procedures will include the following:
- Develop an openness analysis framework (OAF);
- Look up a convenient sample of cognitive neuroscience research labs (CNRLs) using Google and Bing search engines;
- List sample’s elements in a directory or catalogue form that can describe to others what each is about and guide them to how to reach out to it;
- Assess the sample of CNRLs using OAF; and
- Produce a taxonomic outline of openness in CNRLs’ research practices (expected result).
Openness Assessment Framework (OAF)
To analyse and assess the degree of openness in an educational and science resource and practice, while the ‘openness’ conception is evolving, will be a risky task. However, for the sole purpose of this page, this framework of analysis and assessment of ‘openness’ will build on what Atkins et al. (2007 calls “the fundamental components of education—content and tools for teaching, learning, and research,” which actually is in line with definition of OER Recommendation by UNESCO (2022).
Thus, the framework will not go deeper into data, sources codes, preprints as suggested by PLOS (2022), data FAIR principles cited by Edmunds et al. (2022), nor the metadata, software and hardware in the Open Science Recommendation of UNESCO (2021). These things go beyond the scope, capacity and time of this paper.
There are also things in the openness literature that cannot be assessed without putting openness’ indicators to the test like the criteria of re-use, repurpose, adaptation, redistribution and reproducibility in addition to some of the Wiley’s (2014) 5R (retain, reuse, revise, remix, and redistribute) cited by Werth and Williams (2022, p.6). In the end, openness will remain “complex and not a black-and-white issue,” but “a spectrum of degrees of resource openness” whose future “holds opportunities and challenges for [its] enriching and exploiting,” according to Atkins et al. (2007, p. 28).
As a result, my analysis and assessment framework will select for the time being the following indicators:
- Access: Accessing an OER will mean it is also shareable and transparent. Then access here covers two additional criteria which are transparency and sharing.
- OER: The OER here will mean the “content and tools of learning, teaching and research, as referred to by Atkins et al. (2007) to be “fundamental” and by UNESCO (2022, p. 5) to be “in any format or medium.”
- Research project: This should cover what UNESCO (2021) Open Science Recommendation termed as “the entire research cycle, from formulation of hypothesis, development and testing of methodologies, data collection, analysis, management and storage, peer review and other evaluation and verification methods, to analysis, reflection and interpretation, sharing and confrontation of ideas and results, communication, distribution and uptake, and use and re-use,” (p. 30). However, this is a long process that is beyond the time and scope of this assignment.Thus, the focus of this framework will be on OER of the research project available on a project’s public webpage like publications and description/presentation of its results or product/s. This OER will include data if available.
Evaluation
The evaluation of OERs & OEPs found will depend on a rubric underpinned by the above OAF framework.
The rubric will have the following six progressive levels of openness.
- Fully open: All objectives or purposes, contents, methods (methodology/pedagogy), tools, results and OERs are publicly shared and accessible.
- Almost fully open: All parts of the system, but objectives/purposes, are shared.
- 'Quite open: Content, results and OER are shared.
- Open a little: Only parts of content and/or OERS are shared.
- Virtually closed: Nothing shared, but some titles or links.
- Closed: Nothing shared other than the names or titles of research project.
Accordingly, the following table shows the results of survey of a convenient sample of cognitive neuroscience research labs. By 'convient,' I mean those top 20 labs returned in response to my Internet search for 'cognitive neuroscience research labs' using the Google and Bing search engines.
Home | Unit | Lab | OERs | research projects | Openness level |
---|---|---|---|---|---|
Arizona State University | Dept of Psychology | Decision Neuroscience Laboratory | Has access links to full articles | Only titles | Open a little |
Arizona State University | Dept of Psychology | Learning and Development Lab | Links to journals, but no access. | only titles | Virtually closed |
Arizona State University | Dept of Psychology | Memory and Attention Control Lab | Has access links to full articles | Only titles | Open a little |
University of Missouri | School of Medicine | Cognitive Neuroscience Laboratory | Refers to government medicine library with almost all full articles are accessible | Shows progress and results of research (see example) | Quite open |
Boston Children's Hospital | Laboratories of Cognitive Neuroscience | The Wilkinson Laboratory for early language acquisition and cognition | No reference to any. | No reference to any. | Closed |
Boston Children's Hospital | Laboratories of Cognitive Neuroscience | The Nelson Laboratory for brain and behaviour development in infants and children | No reference to any | No reference to any. | Closed |
University College London | Research Group | Applied Cognitive Neuroscience | Articles are accessible, but books/book chapters are not | 'Research' link shows only summary description of topic/s | Open a little |
University College London | Research Group | Attention & Cognitive Control | No books, some articles and conference papers are accessible, but some are not | 'Research' link only gives summary description of topic/s | Open a little |
Babeș-Bolyai University, Romania | Cognitive Neuroscience Laboratory | Music and emotions | Only titles of publications, with no access | 'Research' links only give summary description of topics | Closed |
Columbia University, USA | Cognitive Neuroscience Research | Stern Lab | No OER whatsoever | Data are shared, but 'Research' links only give summary description of topics | Virtually closed |
Harvard University | Cognitive Neuroscience | Buckner Lab | All articles are freely accessible | Summary descriptions, data & tools, downloadable software are all accessible | Almost fully open |
Stanford University | Stanford Cognitive & Systems Neuroscience Laboratory | Research page | Articles & book chapters are shared | Summary descriptions of research without access to them or anything of them | Open a little |
Conclusion
In conclusion, though the sample is from different countries, it does not show much variation in the degree of openness. It tends towards closedness more than openness. None of the sample labs could achieve the standards of full openness, though the evaluation rubric was kept limited in its openness scale with only a few, main openness criteria. This agrees with views presented by the literature as reviewed above. Despite the different perspectives underlying the literature, general conclusions can be drawn out of it:
- The literature is still prescriptive rather than descriptive; it hopes for more openness to come.
- The most common feature of 'openness' in the labs sample is sharing articles; we are still far away from that 'entire cycle' of research.
- Spectrum of 'openness' conceptions, described by the literature, is yet to be filled for taxanomisation of research institutions' 'openness' to be feasible and helpful.
- However, variance of 'openness' across the sample's labs should suggest dynamicity of the openness movement; it is not static, but progressing toward the goal of full openness though very slowly. The hope is that now with UNESCO's endorsement and is pushing of the movement, it will accelerate its progress. The example of Harvard University is very encouraging in this regard.
- Apparently, work on the taxanomosation of practical openness of science and education institutions need be more institutional and systematic; it cannot be done individually. Perhaps UNESCO can add it to implementation agendas of its two Recommendations.
- Individually, one can continue to reach the goal of finding institutions/labs with high degree of openness encompassing that 'entire cycle' of scientific research. This will likely be possible through different search mechanisms, mechanisms that should keep narrowing search terms and perhaps initiate direct communications with labs to establish direct professional relations and later in-person or virtual engagement.
Nevertheless, the work above has initiated the task and hopefully laid foundations for deeper and wider works towards that taxonomy of open science and education resources and practices according to UNISCO-recommended openness.
Bibliography
- Cadwallader, L.; Morton, L.; and Hrynaszkiewic, I. (2022). Explore the first Open Science Indicators dataset—and share your thoughts. The Official PLOS Blog. Retrieved in January 2023 from: https://theplosblog.plos.org/2022/12/open-science-indicators-first-dataset/
- Carrol, S.; Garbal, I; Figueroa-Rodríguez, O.; Holbrook, J.; Lovett, R.; Materechera, S.; Parsons, M.; Raseroka, K.; Rodriguez-Lonebear, D.; Rowe, R.; Sara, R.; Walker, J.; Anderson, J.; and Hudson, M. (2020). The CARE Principles for Indigenous Data Governance. Data Science Journal, 19: 43, 1–12. Retrieved in January 2023 from: https://datascience.codata.org/articles/10.5334/dsj-2020-043/.
- Class, B. (2022). Revisiting Education: On the Role of Imagination, Intuition, and Other “Gifts” for Open Scholars. Frontiers in Education, 7:846882. Retrieved in January 2023 from: https://www.frontiersin.org/articles/10.3389/feduc.2022.846882/full
- Daniel E. Atkins, D.; Brown, J.; and Hammond, A. (2007). A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities. Report to The William and Flora Hewlett Foundation. Retrieved in January 2023 from: https://hewlett.org/wp-content/uploads/2016/08/ReviewoftheOERMovement.pdf
- Deimann, M., & Sloep, P. (2013). How does Open Education Work? Advances in Digital Education and Lifelong Learning, 1–23. Retrieved in December 2022 from: https://www.academia.edu/27268342/How_does_Open_Education_Work
- Edmunds, S.; Zauner, H.; Nogoy, N.; Zgou, H.; Zhang, H.; and Goodman, L. (2022) A Decade of GigaScience: Milestones in Open Science. GigaScience, 11, 1-4. Retrieved in December 2022 from: https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giac067/44277186/giac067.pdf
- Farrow, R. and Deimann, M. (2013). Rethinking OER and their use: open education as Bildung.International Review of Research in Open and Distance Learning, 14(3) pp. 344–360. Retrieved in January 2023 from: https://oro.open.ac.uk/36572/1/Deimann%20%26%20Farrow.pdf
- Inserm (2021). Research continuum. Retrieved in December 2022 from: https://www.inserm.fr/en/our-research/research-continuum/.
- Moisey, S. (1984). How “open” is open learning? Innovative Higher Education, 9(1), 5-18. Retrieved in January 2023 from: https://www.academia.edu/32169486/How_open_is_open_learning
- UNESCO (2012). The Paris OER Declaration 2012. World Open Educational Resources (OER) Congress, UNESCO, Paris, June 20-22. Retrieved in December 2022 from: https://unesdoc.unesco.org/ark:/48223/pf0000246687
- UNESCO (2021). UNESCO Recommendation on Open Science. Parise, France: UNESCO. Retrieved in December 2022 from: https://unesdoc.unesco.org/ark:/48223/pf0000379949?posInSet=1&queryId=26b94f56-e225-4fbe-b5c2-54c6a8670d42
- UNESCO (2022). The 2019 UNESCO Recommendation on Open Educational Resources (OER): Supporting universal access to information through quality open learning materials. Parise, France: UNESCO. Retrieved in December 2022 from: https://unesdoc.unesco.org/ark:/48223/pf0000383205?posInSet=1&queryId=ca4923cc-674b-42b4-a88f-5d6b46e978e7
- Werth, E., and Williams, K. (2022). The why of open pedagogy: a value-first conceptualization for enhancing instructor praxis. Smart Learning Environments, 9:10. Retrieved in January 2023 from: https://slejournal.springeropen.com/articles/10.1186/s40561-022-00191-0