Microworld
- This article is in a large part a synthesis of Rieber 1996
Definitions
Microworlds are small playground of the mind (Clements, 1989, p. 86 cited by Rieber, 1996:587), tiny worlds inside which a student can explore alternatives, test hypotheses, and discover facts that are true about that world. (http://www.umcs.maine.edu/~larry/microworlds/microworld.html). They are software based on very different principles as invention, play and discovery. In educational technology and instructional design, a microworld implements a constructivist instructional design model that lets the learner "play" within an artificial or real (e.g. a Sandbox) environment and learn by building things. The purpose is to give students the resources to build and refine their own knowledge.
History
In 1980, Paper made popular concepts developped around the programming language Logo whose design was influenced by a particular constructionist vision of education. Logo included "turtle geometry", a drawing pen in the form of a turtle that children could move and draw around on the screen or the floor. The turtle is an "object to think with", i.e. a cognitive tool. Since Logo many other environments in the same spirit have been built.
Papert (1980) gave a first formal definition of a microworld as a:“...subset of reality or a constructed reality whose structure matches that of a given cognitive mechanism so as to provide an environment where the latter can operate effectively. The concept leads to the project of inventing microworlds so structured as to allow a human learner to exercise particular powerful ideas or intellectual skills.”(p. 204)
For Papert, a microworld is based to a large degree on the way in which an individual is able to use a technological tool for the kinds of thinking and cognitive exploration that would not be possible without the technology.
But Papert knew that a learner need support structures: “...The use of the microworlds provides a model of a learning theory in which active learning consists of exploration by the learner of a microworld sufficiently bounded and transparent for constructive exploration and yet sufficiently rich for significant discovery.”(p. 208)
While it demonstrates the importance Papert placed on exploration and discovery learning, it also shows the need for a teacher or a microworld designer to identify boundaries for learning. Papert has maybe underestimated the difficulty of designing such boundaries, especially identifying where the boundaries lie for a particular child in a particular domain, but he certainly recognized the need for guidance, both in the microworld itself and in the teacher’s assistance to a child using it. As Papert (1980) writes,“...The construction of a network of microworlds provides a vision of education planning that is in important respects “opposite” to the concept of “curriculum.” This does not mean that no teaching is necessary or that there are no “behavioral objectives.” But the relationship of the teacher to learner is very different: the teacher introduces the learner to the microworld in which discoveries will be made, rather than to the discovery itself.”(p. 209)
Mindstorms contained several fundamental ideas that continue to thrive in the vocabulary and thinking of current constructivist conceptions of learning. Among the most profound is the idea of an object to think with, the Logo turtle, of course, being a prime example. Thus, the turtle becomes a way for the child to grapple with mathematical ideas usually considered too difficult or abstract. A prime role served by the turtle is the way it “concretizes” abstract ideas.
Another important microworld idea is that of debugging. Unlike conventional education, where errors are to be avoided at all costs, errors in problem-solving tasks such as programming are unavoidable and therefore expected. Errors actually become a rich source of information, without which a correct solution could not be found. The use of an external artifact, such as a computational microworld, as an object to think with to extend our intellectual capabilities, coupled with a learning strategy of expecting and using errors made as a route to successful problem solving, is an integral part of all contemporary learning theories (Norman, 1993; Salomon, Perkins, & Globerson, 1991).
Features of microworlds
- central to some forms of exploratory learning
Computer-based microworlds offer the means to allow a much greater number of people, starting at a much younger age, to understand highly significant and applicable concepts and principles underlying all complex systems. Two scientific principles deserve special mention: the vast array of rate of change problems common to all dynamic systems (Ogborn, 1999; Roschelle, Kaput, & Stroup, 2000) and decentralized systems, such as economics, ecosystems, ant colonies, and traffic jams (to name just a few), which operate on the basis of local objects or elements following relatively simple rules as they interact, rather than being based on a centralized leader or plan (Resnick, 1991, 1999).
- Alternative names according to Rieber (1996:583) are: computational media (diSessa, 1989), interactive simulations (White, 1992), participatory simulations (Wilensky & Stroup, 2002), and computer-based manipulatives (Horwitz & Christie, 2002)
- Microworlds are not simulations
Microworlds have two important characteristics that may not be present in a simulation (Rieber, 1996).
- a microworld presents the learner with the "simplest case" of the domain, even though the learner would usually be given the means to reshape the microworld to explore increasingly more sophisticated and complex ideas.
- a microworld must match the learner's cognitive and affective state. Learners immediately know what to do with a microworld - little or no training is necessary to begin using it (imagine first "training" a child how to use a sandbox).
the student is encouraged to think about it as a "real" world, and not simply as a simulation of another world. (http://www.umcs.maine.edu/~larry/microworlds/microworld.html)
All exploratory learning approaches are based on the following 4 principles:
- Learners can and should take control of their own learning;
- Knowledge is rich and multidimensional;
- Learners approach the learning task in very diverse ways; and
- It is possible for learning to feel natural and uncoaxed, that is, it does not have to be forced or contrived.
For Edwards (1995), a microworld would consist of:
- A set of computational objects that model the mathematical or physical properties of the microworld’s domain
- Links to multiple representations of the underlying properties of the model
- The ability to combine objects or operations in complexways, similar to the idea of combining words and sentences in a language
- A set of activities or challenges that are inherent or preprogrammed in the microworld; the student is challenged to solve problems, reach a goal, etc.
While such structural affordances are important, the true tests of a microworld are functional—whether it provides a legitimate and appropriate doorway to a domain for a person in a way that captures the person’s interest and curiosity (Edwards, 1995). In other words, for an interactive learning environment to be considered a microworld, a person must “get it” almost immediately—understand a simple aspect of the domain very quickly with the microworld—and then want to explore the domain further with the microworld (Rieber, 1996b).
A functional view is based on the dynamic relationship among the software, the student, and the setting. Whether or not the software can be considered a microworld depends on this interrelationship when the software is actually used. Students are expected to be able to manipulate the objects and features of the microworld “with the purpose of inducing or discovering their properties and the functioning of the system as a whole” (Edwards, 1995, p. 144). Students are also expected to be able to interpret the feedback generated by the software based on their actions and modify the microworld to achieve their goal (i.e., debugging). And students are expected to “use the objects and operations in the microworld either to create new entities or to solve specific problems or challenges (or both)” (Edwards, 1995, p. 144).
Therefore, a microworld must be defined at the interface between an individual user in a social context and a software tool possessing the following five functional attributes:
- It is domain specific;
- it provides a doorway to the domain for the user by offering a simple example of the domain that is immediately understandable by the user;
- it leads to activity that can be intrinsically motivating to the user—the user wants to participate and persist at the task for some time;
- it leads to immersive activity best characterized bywords such as play, inquiry, and invention; and
- it is situated in a constructivist philosophy of learning.
The fifth and final attribute demands that successful learning with a microworld assumes a conducive classroom environment with a very able teacher serving a dual role: teacher-asfacilitator and teacher-as-learner. The teacher’s role is critical in supporting and challenging student learning while at the same time modeling the learning process with the microworld.
In summary, while both structures and functions of a microworld are important, a functional orientation is closer to the constructivist ideals of understanding interactions with technology from the learner’s point of view. This means that the same software program may be a microworld for one person and not another. Microworlds can be classified as a type of cognitive tool in that they extend our limited cognitive abilities, similar to the way in which a physical tool, like a hammer or saw, extends our limited physical abilities (Jonassen,1996; Salomon et al., 1991). However, microworlds are domain specific and carry curricular assumptions and pedagogical recommendations for how the domain, such as mathematics or physics, ought to be taught.
Theorical basis for learning in a microworld (Model)
Representations aid problem solving in 3 ways:
- the right representation reduces the cognitive load and allows students to use their precious working memory for higher-order tasks.
- representations clarify the problem space for students, such as by organizing the problem and the search path.
- a good representation reveals immediate implications.
Microworlds offer the means of maximizing all 3 benefits of representations, when used in the context of an appropriate science teaching pedagogy, such as one based on the scientific method of hypothesis generating and hypothesis testing. For example, in the ThinkerTools microworld, students directly interact with a dynamic object while having the discrete forces they impart on the object horizontally or vertically displayed on a simple, yet effective datacross. Students can also manipulate various parameters in the microworld, such as gravity and friction. ThinkerTools ably creates a problem space in which numeric, qualitative, and visual representations consistently work together.
Furthermore, Perkins and Unger (1994) suggest that microworlds afford the integration of structuremapping frameworks based on analogies and metaphors. Similarly, a microworld can be designed so as to provide a representation that purposefully directs a student to focus on the most salient relationships of the phenomena being studied. Of course, such benefits do not come without certain costs or risks. For example, if the users do not correctly understand the mapping structure of the analogy, then the benefits will be lost and the students may potentially form misconceptions. Just providing a microworld to students, without the pedagogical underpinnings, should not be expected to lead to learning. The role of the teacher and the resulting classroom practice is crucial here. Microworlds rely on a culture of learning in which students are expected to inquire, test, and justify their understanding. “Students needs to be actively engaged in the construction and assessment of their understandings by working thoughtfully in challenging and reflective problem contexts” (p. 27). As Perkins and Unger (1994) point out, microworld designers have to articulate adequately the components and relationships among components of the domain to be learned. Next they have to construct an illustrative world exemplifying that targeted domain. Finally, the illustrativeworld should provide natural or familiar referents that, when placed in correspondence with one another and mapped to the target domain, yield a better understanding of the domain. (p. 30)
Constructionism: microworld research evolves
Constructionism is strongly rooted in student-generated projects. Projects offer a way critically to relate motivation and thinking and can be defined as “relatively long-term, problemfocused, and meaningful units of instruction that integrate concepts from a number of disciplines or fields of study” (Blumenfeld et al., 1991, p. 370). Projects have 2 essential components: a driving question or problem and activities that result in one or more artifacts (Blumenfeld et al., 1991). Artifacts are “sharable and critiquable externalizations of students’ cognitive work in classrooms” and “proceed through intermediate phases and are continuously subject to revision and improvement” (Blumenfeld et al., 1991, pp. 370–371).
It is important that the driving question not be overly constrained by the teacher. Instead, students need much room to create and use their own approaches to designing and developing the project. Projects, as external artifacts, are public representations of the students’ solution. The artifacts, developed over time, reflect their understanding of the problem over time aswell. In contrast, traditional school tasks, such asworksheets, have no driving question and, thus, no authentic purpose to motivate the student to draw or rally the difficult cognitive processes necessary for complex problem- solving.
In an early constructionnism research, Harel and Papert (1991) strongly suggest that what made a difference was not Logo or any particular group of strategies but, rather, that a “total learning environment” (p. 70) was created that permitted a culture of design work to flourish. They particularly point to the affective influences of this environment. These students developed a different “relationship with fractions” (p. 71), that is, they came to like fractions and saw the relevancy of this mathematics to their everyday lives. Many reported “seeing fractions everywhere.” Harel and Papert resist any tendency to report the success as being “caused” by Logo. Instead, “learning how to program and using Logo enabled these students to become more involved in thinking about fractions knowledge” (p. 73). They point to Logo’s allowing such constructions about fractions to take place.
But, successful project-based learning is not a panacea. Success is based on many critical assumptions or characteristics and failure in any one can thwart the experience. Examples include an appreciation of the complex interrelationship between learning and motivation, an emphasis on student-driven questions or problems, and the commitment of the teacher and his/her willingness to organize the classroom to allow the complexities of project-based learning to occur and be supported (Blumenfeld et al., 1991). Fortunately, the recent and continuing development of rich technological tools directly support both teachers and students in the creation and sharing of artifacts.
Students must be sufficiently motivated over a long period to gain the benefits of project-based learning: Among the factors that contribute to this motivation are “whether students find the project to be interesting and valuable, whether they perceive that they have the competence to engage in and complete the project, and whether they focus on learning rather than on outcomes and grades” (Blumenfeld et al. 1991, p. 375).
The teacher’s role is critical in all this:
- create opportunities for project-based learning,
- support and guide student learning through scaffolding and modeling,
- encourage and help students manage learning and metacognitive processes,
- help students assess their own learning and provide feedback.
Whether teachers will be able to meet these demands depends in large part on
- their own understanding of the content embedded in projects,
- their ability to teach and recognition of student difficulty in learning the content (i.e., pedagogical awarenesses),
- their willingness to assume a constructivist culture in their classrooms.
Examples of microworlds
Many microworlds have become available since 1980:
- Beguile (Reiser et al.)
- Logo and variants like Lego-LOGO, Starlogo
- Boxer (diSessa, Abelson, & Ploger, 1991),
- ThinkerTools (White, 1993),
- SimCalc (Roschelle et al., 2000),
- GenScope (Horwitz & Christie, 2000),
- WISE
- LEGO Mindstorms
- ToonTalk
- Squeak-based systems
- Model-IT (Jackson, Stratford, Krajcik, & Soloway, 1996; Spitulnik, Krajcik, & Soloway, 1999),
- StarLogo (Resnick, 1991, 1999),
- Geometer’s Sketchpad (Olive, 1998),
- Function Machine (Feurzeig, 1999),
- Stella (Forrester, 1989; Richmond & Peterson, 1996).
References
Abelson, H. (1982). Logo for the Apple II. Peterborough. NH: BYTE/McGraw Hill.
Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palinscar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3 & 4), 369–398.
Clements, D. (1989). Computers in elementary mathematics education. Englewood Cliffs, NJ: Prentice Hall.
diSessa, A. A. (1989). Computational media as a foundation for new learning cultures. Technical Report G5. Berkeley: University of California.
diSessa, A. A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT Press.
diSessa, A. A., Abelson, H., & Ploger, D. (1991). An overview of Boxer. Journal of Mathematical Behavior, 10, 3–15.
Edwards, L. D. (1995). Microworlds as representations. In A. A. diSessa, C. Hoyles, R. Noss, & L. D. Edwards (Eds.), Computers and exploratory learning (pp. 127–154). New York: Springer.
Feurzeig, W., & Roberts, N. (1999). Introduction. In W. Feurzeig & N. Roberts (Eds.), Modeling and simulation in science and mathematics education (pp. xv–xviii). New York: Springer-Verlag.
Forrester, J.W. (1989). The beginning of system dynamics. International meeting of the System Dynamics Society, Stuttgart, Germany [online]. Available: http://sysdyn.mit.edu/sdep/papers/D-4165-1.pdf.
Harel, I., & Papert, S. (1991). Software design as a learning environment. In I. Harel & S. Papert (Eds.), Constructionism (pp. 41–84). Norwood, NJ: Ablex.
Horwitz, P., & Christie, M. A. (2000). Computer-based manipulatives for teaching scientific reasoning: An example. In M. J. Jacobson & R. B. Kozma (Eds.), Learning the sciences of the 21st century: Research, design, and implementing advanced technology learning environments (pp. 163–191). Mahwah, NJ: Lawrence Erlbaum Associates.
Horwitz, P., & Christie, M. A. (2002, April). Hypermodels: Embedding curriculum and assessment in computer-based manipulatives. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.
Jackson, S., Stratford, S. J., Krajcik, J. S., & Soloway, E. (1996). Making dynamic modeling accessible to pre-college science students. Interactive Learning Environments, 4(3), 233–257.
Jonassen, D. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm? Educational Technology Research & Development, 39(3), 5–14.
Jonassen, D. H. (1996). Computers in the classroom: Mindtools for critical thinking. Upper Saddle River, NJ: Prentice Hall.
Norman, D. A. (1993). Things that make us smart: Defending human attributes in the age of the machine. Reading, MA: Addison–Wesley.
Ogborn, J. (1999). Modeling clay for thinking and learning. In W. Feurzeig & N. Roberts (Eds.), Modeling and simulation in science and mathematics education (pp. 5–37). New York: Springer- Verlag.
Olive, J. (1998). Opportunities to explore and integrate mathematics with “The Geometer’s Sketchpad.” In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 395–418). Mahwah, NJ: Lawrence Erlbaum Associates.
Papert, S. (1980). Computer-based microworlds as incubators for powerful ideas. In R. Taylor (Ed.), The computer in the school: Tutor, tool, tutee (pp. 203–210). New York: Teacher’s College Press.
Resnick, M. (1991). Overcoming the centralized mindset: Towards an understanding of emergent phenomena. In I. Harel & S. Papert (Eds.), Constructionism (pp. 204–214). Norwood, NJ: Ablex.
Resnick, M. (1999). Decentralized modeling and decentralized thinking. In W. Feurzeig & N. Roberts (Eds.), Modeling and simulation in science and mathematics education (pp. 114–137). New York: Springer-Verlag.
Richmond, B., & Peterson, S. (1996). STELLA: An introduction to systems thinking. Hanover, NJ: High Performance Systems.
Rieber, L. P. (1996) Microworlds, in Jonassen, David, H. (ed.) Handbook of research on educational communications and technology. Handbook of Research for Educational Communications and Technology. Second edition. Simon and Schuster, 583-603 ISBN 0-02-864663-0
Rieber, L. P. (1996b). Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games. Educational Technology Research & Development, 44(2), 43–58.
Roschelle, J., Kaput, J., & Stroup, W. (2000). SimCalc: Accelerating student engagement with the mathematics of change. In M. J. Jacobson & R. B. Kozma (Eds.), Learning the sciences of the 21st century: Research, design, and implementing advanced technology learning environments (pp. 47–75). Mahwah, NJ: Lawrence Erlbaum Associates.
Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2–9.
Spitulnik, M. W., Krajcik, J. S., & Soloway, E. (1999). Construction of models to promote scientific understanding. In W. Feurzeig & N. Roberts (Eds.), Modeling and simulation in science and mathematics education (pp. 70–94). New York: Springer-Verlag.
White, B. Y. (1992). A microworld-based approach to science education. In E. Scanlon & T. O\u2019Shea (Eds.), New directions in educational technology (pp. 227\u2013242). New York: Springer-Verlag.
White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10(1), 1–100.
Wilensky, U., & Stroup,W. (2002, April). Participatory simulations: Envisioning the networked classroom as a way to support systems learning for all. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.