Virtual Presentation
Virtual presentation
Chelsea Whitehead, Memorial University of Newfoundland
Definitions and background
Virtual presentation software (VPS) such as Microsoft PowerPoint, was originally designed in an effort to organize content and structure lessons as a means to avoid “rambling” (Savasci Acikalin, 2011, p. 340). Often used to share information seamlessly from a computer to a larger screen, VPS has begun to transform the ways in which material is presented by moving away from chalkboards, whiteboards, and overhead projectors (Bartsch & Cobern, 2003). VPS has evolved beyond a way to simply showcase pertinent text, now permitting users to integrate audio, video, illustrations, and animated graphics alongside text to enrich the learning experience (Tangen et al., 2010). VPS is also aligned with the constructivist approach to learning, naturally tapping into different learning styles by disseminating a range of material in numerous ways (Siegle & Foster, 2001).
Given its adoption as a staple for presenters across a range of industries, including the education and business sectors, it is likely that students will one day require the skills to effectively deliver a multimedia presentation in their careers (Christie & Collyer, 2006). Examples of VPS used by educators include Microsoft PowerPoint, Apple Keynote, and OpenOffice (Tangen et al., 2010).
Affordances
VPS enables users to do many things that traditional presentation formats do not (Siegle & Foster, 2001). Technological advancements enable educators to create “rich computer-mediated” lessons (Lai, 2000, p. 200). These lessons effectively feature dynamic sounds, visuals, and text together to successfully communicate complex ideas such as abstract concepts (Lai, 2000). Dringus, Snyder, and Terrell (2010) further observed that incorporating audio statements into virtual presentations (VPs) supported learning by helping to clarify information and improve connectivity between parties at a distance. Lai, Tsai, and Yu (2011) also recognized that VPS allows educators to create two-layer presentations whereby parts of the screen are hidden from the students, yet visible to the instructor. This feature benefits presenters by enabling them to refer to their notes without overwhelming their students with information (Lai et al., 2011).
Siegle and Foster (2001) identified multimedia-based presentation software as a “strong learning tool for educators” that can differentiate learning (p. 35). Broek, Segers, and Verhoeven (2014) further support this argument observing that VPS can be set up to allow students to learn at their own pace. Kablan and Erden (2008) also determined that VPS’ ability to present graphics and text together, as opposed to on separate slides, lessened the cognitive load on students. When students received the information on slides where text and graphics were combined together, students invested significantly less mental effort, learned more efficiently, and demonstrated higher performance when tested (Kablan & Erden, 2008).
Knowing how to successfully implement VPS into a real classroom is also a concern for educators (Yang, Chang, Chien, & Tseng, 2012). Although there is research claiming that the concurrent use of animation, narration, and on-screen text in VPs is redundant, Samur (2012) concluded that this repetition actually has a positive effect on foreign language learners. In a study of non-Turkish speaking student’s, Samur found that adding on-screen text to animated slides with narration led students to remember significantly more vocabulary words than their counterparts. Similarly, Yang et al., (2012) posited that added narration likely helps learners to activate prior knowledge and locate key text.
With time at a premium, educators require tools that are both efficient and effective (Bartsch & Cobern, 2003). Lai et al. (2011) further identified VPS as a time-saving measure, explaining that VPs can be created beforehand, reused often, adjusted as necessary, and stored electronically. Lai et al. also observed that VPs allow presenters to face the audience, helping them to establish and maintain student attention for sustained periods of time.
Constraints
Links
ICT in the post-primary MFL classroom: Using Presentation Tools
ICT by Teachers: Web 2 Presentation Tools
Presentation tools: Centre for Teaching Excellence
Tips for Effectively Teaching with Your Multimedia Presentation
Classroom Presentation tools: 15 Essential iPad Apps For Teachers
Works Cited
Ali, A. Z. M. (2010). Effects of teacher controlled segmented animated presentation in facilitating learning. Journal of Educational Multimedia and Hypermedia, 19(4), 367-378. Retrieved from http://www.editlib.org/p/34544/
Apperson, J., Laws, E., & Scepansky, J. (2006). The impact of presentation graphics on students’ experiences in the classroom. Computers & Education, 47(1), 116-126. doi:10.1016/j.compedu.2004.09.003
Bartsch, R. & Cobern, K. (2003). Effectiveness of powerpoint presentations in lectures. Computers & Education, 41(1), 77-86. doi:10.1016/S0360-1315(03)00027-7
Broek, G. S. E., Segers, E. & Verhoeven, L. (2014). Effects of text modality in multimedia presentations on written and oral performance. Journal of Computer Assisted Learning, 30(5), 438-449. doi:10.1111/jcal.12058
ChanLin, L. J. (1999). Visual control for dynamic presentation in multimedia learning. Educational Media International, 36(4), 258-262. doi:10.1080/0952398990360403
Christie, B. & Collyer, J. (2005). Audiences judgements of speakers who use multimedia as a presentation aid: A contribution to training and assessment. British Journal of Educational Technology, 36(3), 477-499. doi: 10.1111/j.1467-8535.2005.00470.x
Dringus, L, Snyder, M, & Terrell, S. (2010). Facilitating discourse and enhancing teaching presence: Using mini audio presentations in online forums. The Internet and Higher Education, 13(1), 75-77. doi:10.1016/j.iheduc.2009.11.001.
Kablan, Z., & Erden, M. (2008). Instructional efficiency of integrated and separated text with animated presentations in computer-based science instruction. Computers & Education, 51(2), 660-668. doi:10.1016/j.compedu.2007.07.002
Lai, S. L. (2000). Influence of audio-visual presentations on learning abstract concepts. International Journal of Instructional Media, 27(2), 199-206. Retrieved from http://www.editlib.org/p/88259/
Lai, Y. S, Tsai, H. H., & Yu, P. T. (2011). Screen-capturing system with two-layer display for powerpoint presentation to enhance classroom education. Journal of Educational Technology & Society, 14(3), 69-81. Retrieved from http://eric.ed.gov/?id=EJ963196
Montazemi, A. (2006). The effect of video presentation in a CBT environment. Journal of Educational Technology & Society, 9(4), 123-138. Retrieved from http://www.ifets.info/journals/9_4/11.pdf
Samur, Y. (2012). Redundancy effect on retention of vocabulary words using multimedia presentation. British Journal of Educational Technology, 43(6), 166-170. doi:10.1111/j.1467-8535.2012.01320.x
Savasci Acikalin, F. (2011). Why Turkish pre-service teachers prefer to see powerpoint presentations in their classes. The Turkish Online Journal of Educational Technology, 10(3), 340-347. Retrieved from http://www.tojet.net/articles/v10i3/10339.pdf
Siegle, D. & Foster, T. (2001). Laptop computers and multimedia presentation software: Their affects on student achievement in anatomy and physiology. Journal of Research on Technology in Education, 34(1), 29-37. Retrieved from http://eric.ed.gov/?id=EJ645726
Tangen, J, Constable, M., Durrant, E., Teeter, C., Beston, B., & Kim, J. (2011). The role of interest and images in slideware presentations. Computers & Education, 56(3), 865-872. doi:10.1016/j.compedu.2010.10.028
Wecker, C. (2012). Slide presentations as speech suppressors: When and why learners miss oral information. Computers & Education, 59(2), 260-273. doi:10.1016/j.compedu.2012.01.013
Yang, F. Y, Chang, C. Y, Chien, W. R, Chien, Y. T, & Tseng, Y. H. (2013). Tracking learners’ visual attention during a multimedia presentation in a real classroom. Computers & Education, 62, 208-220. doi:10.1016/j.compedu.2012.10.009