Concept Maps

The educational technology and digital learning wiki
Jump to navigation Jump to search

Concept Maps

Krista Hamilton, Memorial University of Newfoundland

Definitions and background

Joseph Novak and his colleagues at Cornell University first proposed the learner-constructed graphic mapping technique to facilitate learning. Through this constructivist approach, learners are given the tools to actively build their own knowledge (Kwon & Cifuentes 2009). Concept mapping is a strategy used in instruction and learning to graphically and meaningfully arrange information around a focal concept (Bernard & Naidu, 1992; Erdogan, 2009). A concept map is generally set up in a hierarchical fashion and is made up of concepts placed into nodes. These nodes are connected by prepositions placed on connecting lines which define a relationship or link between concepts (Bernard & Naidu, 1992; Erdogan, 2009). Concept maps allow learners to reflect on and demonstrate their knowledge of a subject and is thus conducive to a constructivist approach to learning (Erdogan, 2009). For educators, concept mapping is a learning tool that can also be used within a group to facilitate collaboration (Gilbert & Greene, 2001). Concept maps can be created with paper and pencil or they can be created electronically. Examples of current software available for concept map creation includes: MindMaple, Cmap tools and Inspiration

Affordances

Electronic or digital concept maps allow learners and educators to do many things that a pencil and paper concept map or other graphic organizer would not allow. One affordance is the flexibility of computer software programming. There are applications currently being researched in which real-time assessment and feedback on concept map creation is available to learners and educators (Wu, Hwang, Milrad, Ke & Huang, 2012). This instant feedback for learners is important to engagement and for educators, it is extremely important for efficiency. Computer software for concept maps also allows for editing, revision, saving, sharing and collaborating. “Online concept-mapping attributes, such as semantic paths, labels, colour-coded nodes, image previews and visuospatial layouts can generally aid the learner in selecting, organizing, and internalizing multimedia-learning content” (Kim & Olaciregui, 2008, p.712).

For student and educator collaboration, electronic concept mapping enables drawing and describing a concept map online so that other group members can add to and modify the map as well as attach comments or concerns; it provides a more efficient collaborative tool to share and modify (Hwang, Shi and Chu, 2011; Lee & Nelson, 2005).  Using concept maps in collaborative projects enables members to benefit from the distributed intelligence which should lead to a stronger graphical representation and therefore allow a greater amount of knowledge to develop (Gilbert & Greene, 2001).

Computer-aided concept mapping also has the affordance of being able to add images, tables etc instead of text alone. Image-based concept mapping provides a more “complete and diverse platform to assist in organizing and structuring knowledge” (Yen, Lee & Chen, 2012, p.318). This visual representation has many advantages as they are quickly and easily recognized and lead to more accurate recall. Errors in an idea can also be easily corrected or adapted (Erdogan, 2009). Another important affordance of digital concept maps is that they can easily be adapted for distance education as a substantial amount of students will use it when given the option (Bernard & Naidu, 1992). Electronic concept maps have an advantage over other graphic organizers in that they can function in many different aspects of education. They can be used as a: (a) strategy for evaluation and assessment, (b) curriculum planning tool, (c) strategy for creative thinking and problem solving, (d) comparison between teacher and learner perspectives, (e) way to reveal learning styles and (f) tool to determine where prior knowledge and misunderstandings arise (Huer, 2005).

Constraints

Links

Works Cited