Repertory grid technique

The educational technology and digital learning wiki
Jump to navigation Jump to search

<pageby nominor="false" comments="false"/>

Definitions

The repertory grid technique is a method for eliciting personal constructs.

“[..]The “Repertory Grid” [...] is an amazingly ingenious and simple idiographic device to explore how people experience their world. It is a table in which, apart from the outer two columns, the other columns are headed by the names of objects or people (traditionally up to 21 of them). These names are also written on cards, which the tester shows to the subject in groups of three, always asking the same question: “How are two of these similar and the third one different?” [...] The answer constitutes a “construct”, one of the dimensions along which the subject divides up her or his world. There are conventions for keeping track of the constructs. When the grid is complete, there are several ways of rating or ranking all of the elements against all the constructs, so as to permit sophisticated analysis of core constructs and underlying factors (see Bannister and Mair, 1968) and of course there are programs which will do this for you.” (Personal Construct Psychology, retrieved 14:03, 26 January 2009 (UTC).)

“The Repertory Grid is an instrument designed to capture the dimensions and structure of personal meaning. Its aim is to describe the ways in which people give meaning to their experience in their own terms. It is not so much a test in the conventional sense of the word as a structured interview designed to make those constructs with which persons organise their world more explicit. The way in which we get to know and interpret our milieu, our understanding of ourselves and others, is guided by an implicit theory which is the result of conclusions drawn from our experiences. The repertory grid, in its many forms, is a method used to explore the structure and content of these implicit theories/personal meanings through which we perceive and act in our day-to-day existence.” (A manual for the repertory grid, retrieved 12:18, 26 January 2009 (UTC)).

“The term repertory derives, of course, from repertoire - the repertoire of constructs which the person had developed. Because constructs represent some form of judgement or evaluation, by definition they are scalar: that is, the concept good can only exist in contrast to the concept bad, the concept gentle can only exist as a contrast to the concept harsh. Any evaluation we make - when we describe a car as sporty, or a politician as right-wing, or a sore toe as painful - could reasonably be answered with the question 'Compared with what?' The process of taking three elements and asking for two of them to be paired in contrast with the third is the most efficient way in which the two poles of the construct can be elicited.”. (Enquire Within, Kelly's Theory Summarised), retrieved 12:18, 26 January 2009 (UTC).

“The repertory grid technique is used in many fields for eliciting and analysing knowledge and for self-help and counselling purposes.” (Repertory Grid Technique, retrieved 12:18, 26 January 2009 (UTC).)

Overview

Most repertory grid analysis use the following principle:

  • The designer has to select a series of elements that are representative of topic. E.g. to analyse teaching styles, the elements are teachers. To analyse learning materials, the elements could be learning objects.
  • The next step is knowledge elicitation. To understand how an individual perceives (understands/compares) these elements, constructs then have to elicitated. E.g. interviewed people will have to compare learning object A with B and C and then state in what regards they are being different. E.g. Pick the two teachers that are most similar and tell me how the third one is different. The output will be contrasted attributes (e.g. motivating vs. boring). This should be repeated until no more new constructs (words) come up.
  • These attributes pairs (elicited constructs that have two opposites) are then used to rate all elements in a matrix (rating grid), usually on a simple five point scale.

Feixas and Alvarez

According to Feixas and Alvarez, the repertory grid is applied in four basic steps: (1) The design phase is where the parameters that define the area of application are set out. (2) In the administration phase, the type of structured interview for grid elicitation and the resulting numerical matrix is defined. (3) The repertory grid data can then subjected to avariety of mathematical analyses. (4) The structual characteristics of the construct system can then be described.

“The elements selected for the grid depend on which aspects of the interviewee's construing are to be evaluated. Elements can be elicited by either asking for role relations (e.g., your mother, employer, best friend) or by focusing on a particular area of interest. A market research study might, for example, use products representative of that market as elements (e.g., cleaning products, models of cars, etc.).”(http://www.terapiacognitiva.net/record/pag/man2.htm Design Phase])

“The type of rating method used (dichotomous, ordinal or interval) determines the type of mathematical analysis to be carried out as well as the the length and duration of the test administration. As before, the criteria for selection depend on the researcher's objectives and on the capacities of the person to be assessed.” (http://www.terapiacognitiva.net/record/pag/man2.htm Design Phase (2)])

Feixas and Alvarez then outline three methods to elicit constructs:

A) Elicitation of constructs using triads of elements. This is the original method used by Kelly. It involves the presentation of three elements followed by the question, "How are two of these elements similar, and thereby different from a third element?" and then "How is the third element different from the other two?" [...] B) Elicitation of constructs using dyads of elements. Epting, Schuman and Nickeson (1971) argue that more explicit contrast poles can be obtained using only two elements at a time. This procedure usually involves an initial question such as, "Do you see these people as more similar or different?" This prompt can then be followed by questions of similarity such as, "How are these two elements alike?" or "What characteristics do these two elements share?" Questions referring to differences such as "How are these two elements different?" are also appropriate. [...]

C) Elicitation of constructs using single elements. Also known as monadic elicitation, this way of obtaining constructs is the most similar to an informal conversation. It consists in asking subjects to describe in their own words the "personality" or way of being of each of the elements presented. The inteviewer's task is limited to writing down the constructs as they appear and then asking for the opposite poles.

In knowledge engineering

The technique discussed by Nick Milton (Repertory Grid Technique) includes four main stages.

  • In stage 1, elements to analyse (e.g. concepts or observable items such as a pedagogical designs or roles) are selected for the grid. A similar number of attributes that allow to characterize each element are also defined.
  • In stage 2 each concept must be rated against each attribute.
  • In stage 3, a cluster analysis is performed on both the elements and the attributes. This will show similarities between elements or attributes.
  • In stage 4, the knowledge engineer walks the expert through the focus grid gaining feedback and prompting for knowledge concerning the groupings and correlations shown.

An example

The following example was taken from Sarah J. Stein, Campbell J. McRobbie and Ian Ginns (2000) research on Preservice Primary Teachers' Thinking about Technology and Technology Education. We only will show parts of the tables (in order to avoid copyright problems).

“Following a process developed by Shapiro (1996), a Repertory Grid reflecting the views of the interviewed group about the technology design process was developed. The interview and survey responses were coded and categorised into a set of dipolar constructs (ten) consisting of terms and phrases commonly used by students about technology and the conduct of technology investigations (Table 1), and a set of elements (nine) of the technology process consisting of typical situations or experiences in the conduct of an investigation (Table 2). The Repertory Grid developed consisted of a seven point rating scale situated between pole positions on the individual constructs, one set for each element. A sample Repertory grid chart is shown in Table 3.”

Table 1: Repertory Grid - Constructs

Label

Descriptor - One pole

Descriptor - Opposite pole

a.

Creating my own ideas

Just following directions

b.

Challenging, problematic, troublesome

Easy, simple

c.

Have some idea beforehand about the result

Have no idea what will result

Table 2: Repertory Grid - Elements

Label

Descriptor

1.

Selection of a problem for investigation by the participant

2.

Identifying and exploring factors which may affect the outcome of the project

3

Decisions about materials and equipment may be needed

4.

Drawing of plans may be involved

5.

Building models and testing them may be required

Table 3: Sample Repertory Grid Chart

The following statement is a brief description of a typical experience you, as a participant, might have while conducting a design and technology project.

ELEMENT #1: Selection of a problem for investigation by the participant.

Rate this experience on the scale of 1 to 7 below for the following constructs, or terms and phrases, you may use when describing the steps in conducting a design and technology project. CIRCLE YOUR RESPONSE.

Construct Scale Construct

a.

Creating my own ideas

1 2 3 4 5 6 7

a.

Just following directions

b.

Challenging, problematic, troublesome

1 2 3 4 5 6 7

b.

Easy, simple

c.

Have some idea beforehand about the result

1 2 3 4 5 6 7

c.

Have no idea what will result

d.

Using the imagination or spontaneous ideas

1 2 3 4 5 6 7

d.

Recipe-like prescriptive work


Analysis techniques

Individal grids can be analysed using various statistical data reduction techniques on both rows and columns, e.g. cluster analysis, principal component analysis or methods like correspondance analysis for both.

A simple desciptive technique to look at multiple grids is to simply chart the values for each participant as graph between the poles (opposite attributes). E.g.

Software

Many statistics programs can do cluster analysis and component analysis. Correspondance analysis is less available. None of the specialized software below has been tested - 14:03, 26 January 2009 (UTC).

Commercial
  • Gridcore Correspondence analysis tool for grid data. Between euros 50 and 150.
  • GridLab (no link)
  • RepGrid (A free 15 elements/15 constructions) version is available)
Free
  • WinGrid (became a tool for artists).

Links

Links of links

Short introductions

Manuals

Bibliography

  • Seelig, Harald (2000). Subjektive Theorien über Laborsituationen : Methodologie und Struktur subjektiver Konstruktionen von Sportstudierenden, PhD Theses, Institut für Sport und Sportwissenschaft, Universität Freiburg. Abstract/PDF
  • Bannister D. & Mair J.M.M. (1968) The Evaluation of Personal Constructs London: Academic Press
  • Bannister D. & Fransella F. (1986) Inquiring Man: the psychology of personal constructs (3rd edition) London: Routledge .
  • Bell, R. (1988): Theory-appropriate analysis of repertory grid data. International Journal of Personal Construct Psychology. 1:101-118
  • Bell, R. (2000) 'Why do statistics with Repertory Grids?', The Person in Society.
  • Bell, R. C. (1990). Analytic issues in the use of repertory grid technique. In G. J. Neimeyer & R. A. Neimeyer (Eds.), Advances in Personal Construct Psychology (Vol. 1, pp. 25-48). Greenwich, CT: JAI
  • Boyle, T.A. (2005), "Improving team performance using repertory grids", Team Performance Management, Vol. 11 Nos. 5/6, pp. 179-187.
  • Bringmann, M. (1992). Computer-based methods for the analysis and interpretation of personal construct systems. In G. J. Neimeyer & R. A. Neimeyer (Eds.), Advances in personal construct psychology (Vol. 2, pp. 57-90). Greenwich, CN: JAI.
  • Crudge, S.E. and Johnson, F.C. (2007), "Using the repertory grid and laddering technique to determine the user's evaluative model of search engines", Journal of Documentation, Vol. 63 No. 2, pp. 259-280.
  • Easterby-Smith, M., Thorpe, R. and Holman, D. (1996), "Using repertory grids in management", Journal of European Industrial Training, Vol. 20 No. 2, pp. 3-30.
  • Fransella, Fay; Richard Bell, Don Bannister (2003). A Manual for Repertory Grid Technique, 2nd Edition, Wiley, ISBN: 978-0-470-85489-1.
  • Guillem Feixas and Jose Manuel Cornejo Alvarez (???), A Manual for the Repertory Grid, Using the GRIDCOR programme, version 4.0. HTML
  • Hemmecke, J.; Stary, C. (2007). The tacit dimension of user-tasks: Elicitation and contextual representation. Proceedings TAMODIA'06, 5th Int. Workshop on Task Models and Diagrams for User Interface Design. Springer Lecture Notes in Computer Science, LNCS 4385, pp. 308-323. Berlin, Heidelberg: Spinger
  • Hemmecke, Jeannette & Christian Stary, A Framework for the Externalization of Tacit Knowledge, Embedding Repertory Grids, Proceedings of the Fifth European Conference on Organizational Knowledge, Learning, and Capabilities 2-3 April 2004, Innsbruck. PDF Preprint.
  • Honey, Peter (1979). The repertory grid in action: How to use it as a pre/post test to validate courses, Industrial and Commercial Training, 11 (9), 358 - 369. DOI: DOI: 10.1108/eb003742
  • Jankowicz, D. (2001), "Why does subjectivity make us nervous?: Making the tacit explicit", Journal of Intellectual Capital, Vol. 2 No. 1, pp. 61-73.
  • Jankowicz, D. (2004), The Easy Guide to Repertory Grids, John Wiley & Sons Ltd, Chichester, UK.
  • Jankowicz, Devi & Penny Dick (2001). "A social constructionist account of police culture and its influence on the representation and progression of female officers: A repertory grid analysis in a UK police force", Policing: An International Journal of Police Strategies & Management, 24 (2) pp. 181-199.
  • Marsden, D. and Littler, D. (2000), "Repertory grid technique – An interpretive research framework", European Journal of Marketing, Vol. 34 No. 7, pp. 816-834.
  • Mitterer, J. & Adams-Webber, J. (1988). OMNIGRID: A general repertory grid design, administration and analysis program. Behavior Research Methods, Instruments & Computers, 20, 359-360.
  • Mitterer, J.O. & Adams-Webber, J. (1988). OMNIGRID: A program for the construction, administration and analysis of repertory grids. In J. C. Mancuso & M. L. G. Shaw (Eds.), Cognition and personal structure: Computer access and analysis (pp. 89-103). New York: Praeger.
  • Neimeyer, G. J. (1993). Constructivist assessment. Thousand Oaks: CA: Sage.
  • Neimeyer, R. A. & Neimeyer, G. J. (Eds.) (2002). Advances in Personal Construct Psychology. New York: Praeger.
  • Sewell, K. W., Adams-Webber, J., Mitterer, J., Cromwell, R. L. (1992): Computerized repertory grids: Review of the literature. International Journal of Personal Construct Psychology. 5:1-23
  • Sewell, K.W., Mitterer, J.O., Adams-Webber, J., & Cromwell, R.L. (1991). OMNIGRID-PC: A new development in computerized repertory grids. International Journal of Personal Construct Psychology , 4, 175-192.
  • Shapiro, B. L. (1996). A case study of change in elementary student teacher thinking during an independent investigation in science: Learning about the "face of science that does not yet know." Science Education, 5, 535-560.
  • Stein, Sarah J., Campbell J. McRobbie and Ian Ginns (1998). Insights into Preservice Primary Teachers' Thinking about Technology and Technology Education, Paper presented at the Annual Conference of the Australian Association for Research in Education, 29 November to 3 December 1998, HTML
  • Weakley, A. J. and Edmonds E. A. 2005. Using Repertory Grid in an Assessment of Impression Formation. In Proceedings of Australasian Conference on Information Systems, Sydney 2005
  • Zuber-Skerritt and Roche (2004). "A constructivist model for evaluating postgraduate supervision: a case study", Quality Assurance in Education, Vol. 12 No. 2, pp. 82-93, [1] (Access restricted)