Concept Maps
Concept Maps
Krista Hamilton, Memorial University of Newfoundland
Definitions and background
Joseph Novak and his colleagues at Cornell University first proposed the learner-constructed graphic mapping technique of concept maps to facilitate learning. Through this constructivist approach, learners are given the tools to actively build their own knowledge (Kwon & Cifuentes 2009). Concept mapping is a strategy used in instruction and learning to graphically and meaningfully arrange information around a focal concept (Bernard & Naidu, 1992; Erdogan, 2009). A concept map is generally set up in a hierarchical fashion and is made up of concepts placed into nodes. These nodes are connected by prepositions placed on connecting lines which define a relationship or link between concepts (Bernard & Naidu, 1992; Erdogan, 2009). Concept maps allow learners to reflect on and demonstrate their knowledge of a subject and is thus conducive to a constructivist approach to learning (Erdogan, 2009). For educators, concept mapping is a technique that can also be used within a group to facilitate collaborative work (Gilbert & Greene, 2001). Concept maps can be created with paper and pencil or they can be created electronically. Examples of current software available for concept map creation includes: MindMaple, Cmap tools and Inspiration.
Affordances
Electronic or digital concept maps allow learners and educators to do many things that a pencil and paper concept map or other graphic organizer would not allow. One affordance is the flexibility of computer software programming. There are applications currently being researched in which real-time assessment and feedback on concept map creation is available to learners and educators (Wu, Hwang, Milrad, Ke & Huang, 2012). Computer software for concept maps also allows for editing, revision, saving, sharing and collaborating. “Online concept-mapping attributes, such as semantic paths, labels, colour-coded nodes, image previews and visuospatial layouts can generally aid the learner in selecting, organizing, and internalizing multimedia-learning content” (Kim & Olaciregui, 2008). For student and educator collaboration, electronic concept mapping enables drawing and describing a concept map online so that other group members can add to and modify the map as well as attach comments or concerns; it provides a more efficient collaborative tool to share and modify (Hwang, Shi and Chu, 2011; Lee & Nelson, 2005). Computer-aided concept mapping also has the affordance of being able to add images, tables etc instead of text alone. Image-based concept mapping provides a more “complete and diverse platform to assist in organizing and structuring knowledge” (Yen, Lee & Chen, 2012).
Constraints
Links
Works Cited
Bernard, R.M. & Naidu, S. (1992). Post-questioning, concept mapping and feedback: A distance education field experiment. British Journal of Educational Technology, 23(1), 48-60. doi:10.1111/j.1467-8535.1992.tb00309.x
Erdogan, Y. (2009). Paper-based and computer-based concept mappings: The effects on computer achievement, computer anxiety and computer attitude. British Journal of Educational Technology, 40(5), 821-836. doi:10.1111/j.1467- 8535.2008.00856.x
Gilbert, N.J. & Greene, B.A. (2001/2002). College students’ collaborative use of Inspiration to generate concept maps in an educational technology class. Journal of Educational Technology Systems, 30(4), 389-402. doi:10.2190/44HH-M7WW-YYGW-FVU5
Hwang, G., Shi, Y. & Chu, H. (2010). A concept map approach to developing collaborative Mindtools for context-aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778-789. doi:10.1111/j.1467-8535.2010.01102.x
Huang, H., Chiou, C., Chiang, H., Lai, S., Huang, C. & Chou, Y. (2012). Effects of multidimensional concept maps on fourth graders’ learning in web-based computer course. Computers and Education, 58(3), 863-873. doi:10.1016/j.compedu.2011.10.016
Kim, P. & Olaciregui, C. (2008). The effects of a concept map-based information display in an electronic portfolio system on information processing and retention in a fifth-grade science class covering the Earth’s atmosphere. British Journal of Educational Technology, 39(4). doi:10.1111/j.1467-8535.2007.00763.x
Kwon, S.Y. & Cifuentes, L. (2009). The comparative effect of individually-constructed computer-based concept maps. Computers & Education, 52(2), 365-375. doi:10.1016/l.compedu.2008.09.01d
Lee, Y. & Nelson, D.W. (2005). Viewing or visualising – which concept map strategy works best on problem-solving performance? British Journal of Educational Technology, 36(2), 193-203. doi:10.111/j.1467-8535.2005.00452.x
Lim, K.Y., Lee, H.W. & Grabowski, B. (2009). Does concept-mapping strategy work for everyone? The levels of generativity and learners’ self-regulated learning skills. British Journal of Educational Technology, 40(4), 606-618. doi:10.1111/j.1467- 8535.2008.00872.x
Martinez, G., Perez, A., Suero, M. & Pardo, P. (2013). The effectiveness of concept maps in teaching physics concepts applied to engineering education: Experimental comparison to the amount of learning achieved with and without concept maps. Journal of Science Education and Technology, 22(2), 204-214. doi:10.1007/s10956-012-9386-8
Rye, J., Landenberger, R. & Warner, T.A. (2013). Incorporating concept mapping in project-based learning: Lessons from watershed investigations. Journal of Science Education and Technology, 22(3), 379-392.
Wu, P., Hwang, G., Milrad, M., Ke, H. & Huang, Y. (2012) An innovative concept map approach for improving students’ learning performance with an instant feedback mechanism. British Journal of Educational Technology, 43(2), 217-232. doi:10.1111/j.1467.8535.2010.01167.x
Yang, C., Hwang, G., Hung, C. & Tseng, S. (2013). An evaluation of the learning effectiveness of concept map-based science book reading via mobile devices. Journal of Educational Technology & Society, 16(3), 167-178.
Yen, J., Lee, C. & Chen, I. (2011) The effects of image-based concept mapping on the learning outcomes and cognitive processes of mobile learners. British Journal of Educational Technology, 43(2), 307-320. doi:10.1111/j.1467-8535.2011.01189.x