Grid computing: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
mNo edit summary
Line 39: Line 39:


* Bote-Lorenzo, M.L.,  Gómez-Sánchez, E.,  Vega-Gorgojo, G.,  Dimitriadis, Y.,  Asensio-Pérez, J.I.,  Jorrín-Abellán, I.M. Gridcole: a tailorable grid service based system that supports scripted collaborative learning (2007, in press) Computers & Education, retrieved 12:28, 21 April 2008 (UTC).
* Bote-Lorenzo, M.L.,  Gómez-Sánchez, E.,  Vega-Gorgojo, G.,  Dimitriadis, Y.,  Asensio-Pérez, J.I.,  Jorrín-Abellán, I.M. Gridcole: a tailorable grid service based system that supports scripted collaborative learning (2007, in press) Computers & Education, retrieved 12:28, 21 April 2008 (UTC).
[[Category:Technologies]]

Revision as of 18:59, 8 July 2009

Draft

Definition

Grid computing is a form of distributed computing. The grid “is an infrastructure that bonds and unifies globally remote and diverse resources in order to provide computing support for a wide range of applications.”

Essential characteristics of grids

According to Bote-Lorenzo (2003:2-3; 2004), the essential characteristics of grids are the following ones:


  • Large scale: a grid must be able to deal with a number of resources ranging from just a few to millions. [...]
  • Geographical distribution: grid's resources may be located at distant places.
  • Heterogeneity: a grid hosts both software and hardware resources that can be very varied ranging from data, files, software components or programs to sensors, scientific instruments, display devices, personal digital organizers, computers, super-computers and networks.
  • Resource sharing: resources in a grid belong to many different organizations that allow other organizations (i.e. users) to access them. [...]
  • Multiple administrations: each organization may establish different security and administrative policies under which their owned resources can be accessed and used. [...]
  • Resource coordination: resources in a grid must be coordinated in order to provide aggregated computing capabilities.
  • Transparent access: a grid should be seen as a single virtual computer.
  • Dependable access: a grid must assure the delivery of services under established Quality of Service (QoS) requirements. [...]
  • Consistent access: a grid must be built with standard services, protocols and inter-faces thus hiding the heterogeneity of the resources while allowing its scalability. [...]
  • Pervasive access: the grid must grant access to available resources by adapting to a dynamic environment in which resource failure is commonplace. [...]

Main uses of grids

According to Bote-Lorenzo (2008:5ff; 2004), main uses of grids are:

  • Distributed supercomputing support
  • High-throughput computing support
  • On-demand computing support
  • Data-intensive computing support
  • Collaborative computing support
  • Multimedia computing support

References

  • Bote-Lorenzo, Miguel L.; Yannis A. Dimitriadis and Eduardo G. Gómez-Sanchez, (2003). Preprint to appear in School of Telecommunications Engineering, University of Valladolid. PDF, retrieved 12:28, 21 April 2008 (UTC).
  • Bote-Lorenzo, M.L., Dimitriadis, Y., Gómez-Sánchez (2004), E. Grid characteristics and uses: a grid definition (Postproceedings extended and revised version) Proceedings of the First European Across Grids Conference, ACG'03, Springer-Verlag, LNCS 2970, 291-298, Santiago de Compostela, Spain, February 2004. PDF, retrieved 12:28, 21 April 2008 (UTC).
  • Bote-Lorenzo, M.L., Gómez-Sánchez, E., Vega-Gorgojo, G., Dimitriadis, Y., Asensio-Pérez, J.I., Jorrín-Abellán, I.M. Gridcole: a tailorable grid service based system that supports scripted collaborative learning (2007, in press) Computers & Education, retrieved 12:28, 21 April 2008 (UTC).