Human-computer interaction: Difference between revisions

The educational technology and digital learning wiki
Jump to navigation Jump to search
(→‎Definition: fixed link)
Line 5: Line 5:
* Human-computer interaction (HCI) is the study and the design of interaction between people and computers.  
* Human-computer interaction (HCI) is the study and the design of interaction between people and computers.  


* Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. [http://sigchi.org/cdg/cdg2.html (Hewett et al., 2004).
* Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. [http://sigchi.org/cdg/cdg2.html] (Hewett et al., 2004).


* Design methodologies in HCI aim to create user interfaces that are [[usability | usable]], i.e. that can be operated with ease and efficiency. However, an even more basic requirement is  [[cognitive ergonomics | cognitive usability]], ie. that the user interface be useful allowing the user to complete relevant tasks within a [[task environment]].
* Design methodologies in HCI aim to create user interfaces that are [[usability | usable]], i.e. that can be operated with ease and efficiency. However, an even more basic requirement is  [[cognitive ergonomics | cognitive usability]], ie. that the user interface be useful allowing the user to complete relevant tasks within a [[task environment]].

Revision as of 15:26, 2 March 2007

Draft

Definition

  • Human-computer interaction (HCI) is the study and the design of interaction between people and computers.
  • Human-computer interaction is a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. [1] (Hewett et al., 2004).
  • Design methodologies in HCI aim to create user interfaces that are usable, i.e. that can be operated with ease and efficiency. However, an even more basic requirement is cognitive usability, ie. that the user interface be useful allowing the user to complete relevant tasks within a task environment.

Design methodologies

Analysis
Design

Designing for HCI

Explaining the impact of computers on design as an activity, Hoffman, Roesler and Moon (2004) offer the following:

The older design credo “form follows function” has become obsolete. Artifacts now might not look like what they do, in part because their inner makings have shifted from a mechanical base to an electronic one. Much of the semantic coding in artifacts gets lost to the human who looks at the artifact, and designing meaningful artifacts for human–machine interaction becomes necessary to channel the vast growth in the belief that intelligent systems would provide means for collaborative technology. At the same time, the computer has entered the design office as a tool that has challenged traditional design expertise and extended the quest in defining what the activity of design entails. (Lore is that most design work is now done using computers.) Designers face challenges in designing new technologies, and they have to design with these new technologies. And they have to do so at an accelerated pace, using designer-centered technologies that require kludges, work-arounds, and make-work.

A typical HCI related design tasks/elements

  1. User needs analysis
    • Define the analysis framework and methodology
    • Define contents and concepts
    • Acquire and categorize mental representations
  2. Define the interface "language"
  3. Prototype creation
  4. Usability and cognitive ergonomics testing

Interaction design

In a computer-based environment an interaction can be defined as “the representations and operations of an application system by considering what representations the user needs to interact with, through what operations.” (Yamamoto and Nakakoji, 2005)

Interaction design principles

Ladly outlines some guidelines in designing interactions:

  • Visibility - knowing the stat of an object and the choices available
  • Feedback - timely, in an appropriate mode (aural, visual, etc.), yet not distracting from task
  • Affordance - use object whose actual properties are in accordance with its perceived properties (e.g. an icon depicting a switch should turn something on or off)
  • Mapping - make use of the relationship between objects and their environment (e.g. placing a menu bar at the top of an application window)
  • Constraints - limit the possible interactions physically, semantically (context-related meaning), logically, or culturally (learned conventions)
  • Habituation - the use of the system should become internalized to the point that the user only thinks of the task, not the system

A cognitive interactive interface should invoke and respond to only one action from the user. (Ladly, 2004)

HCI design approaches

One view of design is that it is an activity that aims to solve contextual problems systematically (Hoffman, Roesler & Moon, 2004)

  • Top-down or hierarchical problem solving - working from the functional level to the specific working out issues problems that arise
  • Design by reuse - use of previous designs that are based on similar situations
  • Design problem evolution - recognition and relaxation of assumptions thus engaging in a redefinition of the problem in cycles that involve planning, translating and revising in order to optimize a system so that it can satisfy diverging and contradictory requirements
  • Design by deliberative recognition-priming - use of previous conceptual knowledge and experience to recognize useful patterns to by-pass hierarchical processes
  • Design by serendipitous recognition-priming - ideas that arise from opportunistic comparisons and analogies not necessarily directly related to the design problem.
  • Design by collaboration and confrontation - team-based design based on collaboration and confrontation activities.

Story-based design

Tom Erickson (1995) outlines some ways in which storytelling can be used as a tool for designing human-computer interactions. Stories reveal users' experiences, desires, fears and practices that can in turn drive effective user-centered design. He points out that stories, in contrast to scenarios, involve real people in particular situations and consequently involve unique histories, motivations and personalities.

  • story gathering - gathering users' stories on the users' domain (a culturally, socially and physically situated environment) thereby collecting and building a shared language, referents and questions and issues to be addressed.
  • story making - building 'scenario-like' stories that capture emerging common concepts and details from users' stories
  • involving users - using stories with users to elicit dialog and discussions that bring essential ideas and problems to light that should be considered in the design.
  • transferring design knowledge - being highly memorable and still susceptible to the uncertainty entailed in the particular being applied to the whole, “stories become important as mechanisms for communicating with the organization by upport design transfer”, by “capturing both action and motivation, both the what and the why of the design” (Erickson, 1995)

Personas in interaction design

Design of an interaction sets the conditions in which a conversation between a user and a system will take place. The system needs to speak and respond to the user. To envision more effectively how such a conversation may proceed, interaction designers determine user personas. Personas are defined models of intended and potential user types. These models can be defined through ethnographic research practices such as observation, interviews or direct user-testing with sample target users. Personas are widely used in user-centered design approaches.

Links

References

  • Erickson, T. Notes on Design Practice: Stories and Prototypes as Catalysts for Communication. based on a version of this paper that appeared in Scenario-Based Design: Envisioning Work and Technology in System Development. (ed. J. Carroll). New York: Wiley & Sons, 1995. [2]
  • Hewett, Baecker, Card, Carey, Gasen, Mantei, Perlman, Strong and Verplank (2004). ACM SIGCHI Curricula for Human-Computer Interaction, Chapter 2: Human-Computer Interaction HTML - retrieved 17:47, 9 June 2006 (MEST).
  • Hoffman, R., Roesler, A., Moon, B. (2004). What Is Design in the Context of Human-Centered Computing? Human-Centered Computing. IEEE Computer Society. JULY/AUGUST 2004
  • Paul Dourish, Implications for Design, CHI 2006 paper, PDF
  • Yamamoto, K. Nakakoji, Y. (2005). Hypertext representations as a means for creative knowledge work New Review of Hypermedia and Multimedia, Vol. 11, No. 1, p. 39-67.