The educational technology and digital learning wiki
Jump to navigation
Jump to search
|
|
Line 39: |
Line 39: |
|
| |
|
| '''Input documents''' | | '''Input documents''' |
| | |
| | * This software allows to analyse documents that are segemented into chunks |
| | |
| | '''Installation under Ubuntu 14 (Trusty) |
| | * It worked |
| | * Get the deb file |
| | sudo dpkg -i iramuteq_0.6-alpha3_all.deb |
| | # repaire something with python |
| | apt-get -f install |
| | |
| | |
|
| |
|
| Input documents are plain text files that containing simple markup that identifes variables and topics (see [http://www.iramuteq.org/documentation/formatage-des-corpus-texte Formatage des corpus texte]. This allows to distinguish between: | | Input documents are plain text files that containing simple markup that identifes variables and topics (see [http://www.iramuteq.org/documentation/formatage-des-corpus-texte Formatage des corpus texte]. This allows to distinguish between: |
Revision as of 18:24, 21 October 2014
IRaMuTeQ 0.6 alpha 3 (2014/10/19)
Developed by: Pierre Ratinaud, LERASS
License:
Web page : Tool homepage
Tool type : Application software
The last edition of this page was on: 2014/10/21
The Completion level of this page is : Low
The last edition of this page was on: 2014/10/21 The Completion level of this page is : Low
SHORT DESCRIPTION
[[has description::IRaMuTeQ stands for "Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires", in English, "interface of R for multi-dimensional text and questionnaire analysis".
Iramutec is built on top of R]]
TOOL CHARACTERISTICS
Usability
Authors of this page consider that this tool is '.
Tool orientation
This tool is designed for general purpose analysis.
Data mining type
This tool is made for Text mining.
Manipulation type
This tool is designed for Data extraction, Data transformation, Data analysis, Data visualisation.
Tool objective(s) in the field of Learning Sciences |
☑ Analysis & Visualisation of data
☑ Predicting student performance
☑ Student modelling
☑ Social Network Analysis (SNA)
☑ Constructing courseware
|
☑ Providing feedback for supporting instructors:
☑ Recommendations for students
☑ Grouping students:
☑ Developing concept maps:
☑ Planning/scheduling/monitoring
☑ Experimentation/observation
|
ABOUT USERS
Tool is suitable for:
Students/Learners/Consumers
Teachers/Tutors/Managers
Researchers
Developers/Designers
Organisations/Institutions/Firms
Others
Required skills:
SYSTEM ADMINISTRATION: Medium
DATA MINING MODELS: Medium
FREE TEXT
Tool version : IRaMuTeQ 0.6 alpha 3 2014/10/19 (blank line)
Developed by : Pierre Ratinaud, LERASS (blank line)
Tool Web page : http://www.iramuteq.org/ (blank line)
Tool type : Application software (blank line)
|
|
SHORT DESCRIPTION
IRaMuTeQ stands for "Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires", in English, "interface of R for multi-dimensional text and questionnaire analysis".
Iramutec is built on top of R
TOOL CHARACTERISTICS
Tool orientation |
Data mining type |
Usability |
This tool is designed for general purpose analysis. |
This tool is designed for Text mining. |
Authors of this page consider that this tool is . |
Data import format |
Data export format |
TXT. |
. |
Tool objective(s) in the field of Learning Sciences |
☑ Analysis & Visualisation of data
☑ Predicting student performance
☑ Student modelling
☑ Social Network Analysis (SNA)
☑ Constructing courseware
|
☑ Providing feedback for supporting instructors:
☑ Recommendations for students
☑ Grouping students:
☑ Developing concept maps:
☑ Planning/scheduling/monitoring
☑ Experimentation/observation
|
Can perform data extraction of type:
Can perform data transformation of type:
Can perform data analysis of type:
Can perform data visualisation of type:
(These visualisations can be interactive and updated in "real time")
ABOUT USER
Tool is suitable for: |
Students/Learners/Consumers:☑ |
Teachers/Tutors/Managers:☑ |
Researchers:☑ |
Organisations/Institutions/Firms:☑ |
Others:☑ |
Required skills: |
Statistics: MEDIUM |
Programming: MEDIUM |
System administration: MEDIUM |
Data mining models: MEDIUM |
OTHER TOOL INFORMATION
|
|
Iramuteq-logo.png
|
IRaMuTeQ
|
|
|
Pierre Ratinaud, LERASS
|
2014/10/19
|
0.6 alpha 3
|
http://www.iramuteq.org/
|
[[has description::IRaMuTeQ stands for "Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires", in English, "interface of R for multi-dimensional text and questionnaire analysis".
Iramutec is built on top of R]]
|
General analysis
|
|
Researchers
|
Medium
|
Medium
|
Medium
|
Medium
|
Application software
|
|
|
Text mining
|
Data extraction, Data transformation, Data analysis, Data visualisation
|
|
|
TXT
|
|
|
|
|
|
|
|
Low
|
Links
Input documents
- This software allows to analyse documents that are segemented into chunks
Installation under Ubuntu 14 (Trusty)
- It worked
- Get the deb file
sudo dpkg -i iramuteq_0.6-alpha3_all.deb
- repaire something with python
apt-get -f install
Input documents are plain text files that containing simple markup that identifes variables and topics (see Formatage des corpus texte. This allows to distinguish between:
- A text
- A text segment
- A combination of text segments
Exemples d'utilisation
- Marty E., Marchand P., Ratinaud P., 2013. Les médias et l’opinion: éléments théoriques et méthodologiques pour une analyse du débat sur l’identité nationale. Bulletin de méthodologie sociologique, vol. 117, n°1, p. 46‑60.
- Ratinaud P. et Marchand P. (2012). Application de la méthode ALCESTE à de “gros” corpus et stabilité des “mondes lexicaux”: analyse du “CableGate” avec IRaMuTeQ. In Actes des 11eme Journées internationales d’Analyse statistique des Données Textuelles (pp. 835–844). Presented at the 11eme Journées internationales d’Analyse statistique des Données Textuelles. JADT 2012, Liège, Belgique. Retrieved from http://lexicometrica.univ-paris3.fr/jadt/jadt2012/tocJADT2012.htm
Théorie
- Reinert M. (1983). Une méthode de classification descendante hiérarchique : application à l'analyse lexicale par contexte, Les cahiers de l'analyse des données, Vol VIII, n° 2, p 187-198.