STIC:STIC IV (2015)/Hackday Batelle

De EduTech Wiki
Aller à la navigation Aller à la recherche

Participation au hackday

TECFA animera une table sur le 3D printing dans l'éducation et domaines reliés. Un groupe d'étudiants aura l'occasion de présenter leurs créations et celles de leurs collègues et de s'interroger sur des sujets de leur choix

3D Printing Hack FEST - 28 nov. 2015

Organisation de la journée

Organisateurs:

Plus d'infos sur la journée (pas encore de programme pour le moment)

Programme provisoire de la journée

9H00 Ouverture mise en place

10h00 Ouverture public (café croissant), tableau blanc défi (pour la table prospective)

10h30 Introduction à la journée, Choix des défis

10h45 Début

12h30 Lunch

13h00 Suite Hackfest

16h30 Retour expérience responsables de table

17h00 Cloture et annonce des meetups 3D printing

Participant(e)s TECFA / MALTT

Le group est clos. On ne peut plus ajouter des gens. Par contre, tout le monde assister à la journée

  • Angela Forero Mora
  • Andrés Gomez
  • Joyce Maurin
  • Pedro De Freitas
  • Sebastien Waeger
  • Kim Schmidt
  • Alexandra Theubet
  • Andrea Giarrizzo
  • Daniel K. Schneider

Organisation de la table TECFA

Thème principale: Fabrication d'objets pour l'éducation (donc on abordera peu la question de comment intégrer l'impression 3D en soi et avec des élèves dans l'enseignement)

L'animation sera organisée par un groupe d'étudiants du master MALTT

  • En continu : impression de nos projets personnels (Seb et Pedro : leurs engrenages) on pourra ainsi y faire référence dans les présentations ci-dessous
  • En tournus :
  1. Présentation d'OpenScad et son langage de programmation. Qui peut apprendre OpenSCAD ? Comme l'utiliser dans un contexte pédagogique ? (Seb)
  2. Présentation de différents plastiques d'impression: propriétés, utilisation, avantages et désavantages. Y-a-t-il un plastique pour tout ? (Joyce)
  3. Présentation et discussion d'un projet d'initiation à l'impression 3D "village des savants". Comment initier un groupe d'étudiants - futurs spécialistes en technologies éducatives à l'impression 3D ? Peut-on transférer le modèle à la formation d'enseignants ? (Alex et Pedro)
  4. Discussion de l'utilisation de l'imprimante 3D dans le domaine médical (Kim) (il faudrait éventuellement centrer la discussion sur les imprimantes low-cost, vu qu'il y aura peut-être des gens qui font dans le haut-de-gamme. A vérifier avec Joliat).
  5. Kits constructifs pour l'éducation. Que peuvent nous inspirer les modèles dans thingiverse ? (Angela)

A discuter

  • On va amener du papier / crayon pour afficher notre programmer (donc thèmes activés en tournus)
  • Comment présenter les plastiques ?
  • Il serait intéressant de mettre en avant les difficultés, misconconceptions, etc. qui sortent du projet village de savants et dont il faut tenir compte lors d'une organisation d'un projet similaire
  • Pour le domaine médical il faudrait savoir s'il faut focaliser sur qc. (par exemple l'éducation médicale ou encore l'usage d'imprimantes low cost).

A faire

  • Qqn. doit m'aider à transporter les imprimantes (mettre dans la voiture). Oublié qui a donné son accord ....
    • Pedro de Freitas va venir pour vous aider à transporter le matériel.
    • Merci :) Départ à 9h. Donc on peut se donner RDV à 8:45 en bas devant la porte arrière.==> OK :)

Formulaire plastique

Proposition pour une liste de critères (on n'est pas obligé de tout remplir pendant le hackday)


Propriétés objectives

  • Nom complet
  • Procédure de fabrication
  • Températures
    • Bed temperature (je ne trouve pas le terme francophone...)
    • maléable (quand est-ce qu'on peut déformer)
    • fond
    • devient de l'eau
    • extrusion minimale
    • extrusion maximale
  • solidité etc,
  • élasticité
  • Variétés
    • Composition de la formule
    • Variations sur l'usage que cela peut entrainer (notamment la température, vitesse, et flow rate)
  • Objets du quotidien qui contiennent ce plastique

ABS

  • Nom complet : Acrylonitrile butadiène styrène
  • Procédure de fabrication : "Le matériau ABS est biphasé (structure complexe), fabriqué en mélangeant un copolymère styrène-acrylonitrile (SAN, issu de styrène et d'acrylonitrile) avec un matériau élastomère à base de polybutadiène (du polystyrène ou du SAN a été greffé sur le tronc de polybutadiène). Les nodules (phase en îlots) de la structure élastomère sont noyés dans la matrice. La phase élastomère apporte de la résistance aux chocs et de la souplesse.

Il se recycle facilement par étuvage et peut se combiner avec les autres composés styréniques (PS, SB, SAN). Pour améliorer sa tenue thermique, un 4e comonomère (l'alpha-méthylstyrène) peut être incorporé. On parle alors d'« ABS Chaleur »." (Wikipedia, 23.11.2015)

  • Températures : 220 - 260 (la température dépend du type de plastique ABS utilisé et de la nature de l'objet imprimé)
    • Bed temperature : 65°C
    • maléable : non
    • fond : non
    • devient de l'eau : non
    • extrusion minimale : 220°C
    • extrusion maximale : 260°C
  • solidité etc, :
  • élasticité : nul
  • Variétés
    • Composition de la formule
    • Variations sur l'usage que cela peut entrainer (notamment la température, vitesse, et flow rate)
  • Objets du quotidien qui contiennent ce plastique
    • Lego officiels
    • Armes d'airsoft

PLA

  • Nom complet : Acide polylactique (PolyLactic Acid)
  • Procédure de fabrication : "Le PLA peut être obtenu à partir d'amidon de maïs, ce qui en fait la première alternative naturelle au polyéthylène (le terme de bioplastique est utilisé). En effet, l'acide polylactique est un produit résultant de la fermentation des sucres ou de l'amidon sous l'effet de bactéries synthétisant l'acide lactique. Dans un second temps, l'acide lactique est polymérisé par un nouveau procédé de fermentation, pour devenir de l'acide polylactique." (Wikipedia, 23.11.2015)
  • Températures
    • Bed temperature :
    • maléable : oui (quand est-ce qu'on peut déformer)
    • fond : non
    • devient de l'eau : non
    • extrusion minimale : 180°C
    • extrusion maximale : 220°C
  • solidité etc,
  • élasticité
  • Variétés
    • Composition de la formule
    • Variations sur l'usage que cela peut entrainer (notamment la température, vitesse, et flow rate)
  • Objets du quotidien qui contiennent ce plastique
    • Emballages alimentaires
    • Fils de suture en chirurgie

Propriétés semi-objectives

  • Effet de l'ajout de pigments, etc.
  • adhérence (qualité du "bonding" si c'est mesurable)
  • swell (c.f. cette explication)
  • Sensibilité à l'humidité (combien de temps peut-on laisser du PLA à l'air)
  • Toxicité (précautions à prendre)
  • Friction (par ex. PLA coule moins bien que ABS et peut boucher le tube).

Utilisation

  • Types d'objets/usages le plus indiqués
  • Types d'objets/usages à ne pas considérer
  • Stockage

Impression

(évidement tout cela dépend beaucoup de l'architecture de l'extrudeur, donc il faut ajouter des "stories")

  • Vitesse d'impression min
  • Vitesse idéale
  • Vitesse max
  • Rétraction mm/vitesse (y compris problèmes)
  • Sur quel matériel est-ce cela adhère bien ? (y compris pas assez ou trop, par ex. PLA colle trop sur l'acrylique et certains TPE ne collent pas sur Kapton)
  • Usage de colle, hairspray (comment enlever l'objet ?)
  • Effet taille de la buse (peut-on imprimer du "wood" avec une buse 0.3mm ?)
  • Chambre fermée ?
    • Quelle température
  • Lit chauffé
    • quelle température?
  • Objets difficiles à imprimer (par ex. objets fins, plats, etc.)
  • Mauvais comportements (warping, ne colle pas dans les angles, reste mou, etc.)
  • Remédiations aux mauvais comportement
  • Type de extrudeur nécessaire (par ex. pour le PLA uniquement la buse doit chauffer, pas le tuyau).
  • Comment gérer du vieux plastique (notamment le PLA transparent ?)
  • Support: combinaison de plastiques avec un dual-head ?

Ressources

Un des meilleurs sites (mais chaotique et mal mis à jour) est Reprap.org (category:thermoplastic) Se référer à la page de l'Edutechwiki anglais : 3D_printer_filament

Achat

  • Bonnes/mauvaises variantes
  • Meilleurs rapports qualité/prix