|
|
(37 versions intermédiaires par 4 utilisateurs non affichées) |
Ligne 1 : |
Ligne 1 : |
| {{tutoriel | | {{tutoriel |
| |fait_partie_du_cours=Manuel de recherche en technologie éducative | | |fait_partie_du_cours=Manuel de recherche en technologie éducative |
| | |est_module_de=Designs de recherche orientés test de théorie |
| | |module_précédant=Principes de la recherche empirique |
| | |module_suivant=Design de recherche orientés formulation de théorie |
| | |pas_afficher_sous-page=Non |
| |page_precedente=De la théorie aux données | | |page_precedente=De la théorie aux données |
| |page_suivante=Designs expérimentaux | | |page_suivante=Designs expérimentaux |
Ligne 6 : |
Ligne 10 : |
| |dernière_modif=2015/03/27 | | |dernière_modif=2015/03/27 |
| |difficulté=débutant | | |difficulté=débutant |
| | |voir_aussi=Design de recherche orientés formulation de théorie, Designs de recherche orientés recherche design |
| | |pages_module=Designs de recherche orientés test de théorie,Designs_expérimentaux,Designs quasi-expérimentaux,Designs statistiques,Design comparaison de systèmes similaires |
| }} | | }} |
| == Introduction == | | == Introduction au module == |
|
| |
|
| Nous avons précédemment présenté trois grandes familles d’approches de recherche: la recherche explicative, orientée vérification de théorie, la recherche interprétative, orientée création de théorie, et la recherche design. Dans ce chapitre, nous présenterons des designs de recherche (stratégies d’investigation) explicatifs, orientés vérification de théorie, i.e. le courant dominant des sciences sociales. La plupart des recherches en sciences de l’éducation publiées dans des revues de qualité s’appuient sur cette méthodologie. Plusieurs recherches évaluation reposent également sur une approche descendante fondée sur des modèles théoriques. | | Nous avons précédemment présenté trois grandes familles d’approches de recherche: (1) la recherche explicative, orientée test de théorie, (2) la recherche interprétative, orientée création de théorie, et (3) la recherche design. Dans ce chapitre, nous présenterons des designs de recherche (stratégies d’investigation) explicatifs, orientés test de théorie, i.e. le courant dominant des sciences sociales. La plupart des recherches en sciences de l’éducation publiées dans des revues de qualité s’appuient sur cette méthodologie. Plusieurs recherches d'évaluation reposent également sur une approche descendante fondée sur des modèles théoriques. |
|
| |
|
| Objectifs d’apprentissage | | Objectifs d’apprentissage |
|
| |
|
| * Comprendre les principes fondamentaux de la recherche orientée vérification de théorie | | * Comprendre les principes fondamentaux de la recherche orientée test de théorie |
|
| |
|
| * Se familiariser avec quelques approches principales et être en mesure de les distinguer | | * Se familiariser avec quelques approches principales et être en mesure de les distinguer |
|
| |
|
| === Introduction === | | == Principes == |
| | | |
| La recherche quantitative cherche à vérifier une théorie en examinant les relations existant entre les variables. Ces variables peuvent être mesurées, par des instruments, afin de générer des données numériques qui vont pouvoir être analysées avec des procédures statistiques. De plus, une étude quantitative a une structure fixe comportant une introduction, la littérature et la théorie, les méthodes, les résultats et la discussion. (Creswell, 2014, p. 247) | | La recherche quantitative cherche à vérifier une théorie en examinant les relations existant entre les variables. Ces variables peuvent être mesurées, par des instruments, afin de générer des données numériques qui vont pouvoir être analysées avec des procédures statistiques. De plus, une étude quantitative a une structure fixe comportant une introduction, la littérature et la théorie, les méthodes, les résultats et la discussion (Creswell, 2014, p. 247). |
|
| |
|
| Les éléments les plus importants d’un design empirique fondé sur la théorie sont de ce fait (Figure 21): la théorie, les hypothèses, les mesures et les analyses causales (statistiques). | | Les éléments les plus importants d’un design empirique fondé sur la théorie sont de ce fait (Figure 21): la théorie, les hypothèses, les mesures et les analyses causales (statistiques). |
|
| |
|
|
| | [[Fichier:Principaux éléments d'une recherche empirique fondée sur la théorie.png|cadre|néant|Figure 21: Principaux éléments de la recherche empirique fondée sur la théorie ]] |
|
| |
|
| Figure 21: Principaux éléments de la recherche empirique fondée sur la théorie
| | * ''Conceptualisations:'' chaque question de recherche est détaillée par l’intermédiaire d’une ou de plusieurs hypothèses. Les hypothèses sont toujours ancrées dans la théorie. |
|
| |
|
|
| | * ''Mesures:'' les mesures sont généralement quantitatives (e.g. données expérimentales, données d’enquêtes, «statistiques» organisationnelles ou publiques, etc.) et s’appuient sur des artefacts, tels que des sondages ou du matériel expérimental. |
| | |
| * ''Conceptualisations:'' chaque question de recherche est détaillée par l’intermédiaire d’une ou de plusieurs hypothèses. Les hypothèses sont ancrées dans la théorie.
| |
| | |
| * ''Mesures:'' les mesures sont généralement quantitatives (e.g. données expérimentales, données d’enquêtes, «statistiques» organisationnelles ou publiques, etc.) et s’appuient sur des artéfacts tels que des sondages ou du matériel expérimental. | |
|
| |
|
| * ''Analyses et conclusions:'' les hypothèses sont testées à l’aide de méthodes statistiques, par exemple des designs expérimentaux ou des designs corrélationnels (statistiques). | | * ''Analyses et conclusions:'' les hypothèses sont testées à l’aide de méthodes statistiques, par exemple des designs expérimentaux ou des designs corrélationnels (statistiques). |
|
| |
|
| Il existe plusieurs variantes d’approches de recherche orientées vérification de théorie. Nous allons nous intéresser à certaines d’entre elles dans les chapitres suivants. Ces différentes approches ont des suppositions et des modèles méthodologiques en commun, que nous présenterons en temps voulu. | | Il existe plusieurs variantes d’approches de recherche orientées test de théorie. Nous allons nous intéresser à certaines d’entre elles dans les chapitres suivants. Ces différentes approches ont des suppositions et des modèles méthodologiques en commun, que nous présenterons en temps voulu. |
| | |
| === Designs quasi-expérimentaux ===
| |
|
| |
|
| |
|
| Il est difficile de mener des expériences dans des contextes réels, e.g. dans des écoles. Toutefois, il existe des designs qu’on appelle les designs ''quasi-expérimentaux''. Ils s’inspirent de principes de designs expérimentaux (pré-tests, post-tests et groupes contrôle). Ces designs ont l’avantage de pouvoir être menés dans des situations non-expérimentales, i.e. dans des contextes «réels» et peuvent être utilisés lorsque les vrais traitements expérimentaux deviennent trop «lourds», i.e. lorsqu’ils nécessitent plus de 2-3 variables de traitement bien définies.
| | == Résumé == |
|
| |
|
| Les désavantages des situations quasi-expérimentales sont liés au manque de contrôle:
| | === Liste de designs === |
|
| |
|
| * Vous ne connaissez pas tous les stimuli possibles (i.e. les causes qui ne sont pas dues aux conditions expérimentales)
| | Dans ce module sur les '''designs de recherche orientés test de théorie''', nous présentons quelques designs de recherche fondés sur la théorie, que nous résumons dans le tableau ci-dessous avec quelques cas d’utilisation types. Il existe d’autres designs fondés sur la théorie que nous n’avons pas présentés, e.g. les simulations. |
|
| |
|
| * Vous ne pouvez pas distribuer de manière aléatoire (distribuer équitablement d’autres stimuli intermédiaires non connus aux groupes)
| | <table class="wikitable" style="background-color:#D8FF8B;"> |
| | <tr> |
| | <th>Approche</th> |
| | <th> |
| | Quelques cas d’utilisation</th> |
| | </tr> |
| | <tr> |
| | <th>[[Designs expérimentaux]]</th> |
| | <td> |
| | <ul> |
| | <li>Enquêtes psychopédagogiques</li> |
| | <li>Interface homme machine</li> |
| | </ul> |
| | </td> |
| | </tr> |
| | <tr> |
| | <th>[[Designs quasi-expérimentaux]]</th> |
| | <td> |
| | <ul> |
| | <li>Ingénierie pédagogique (dans son ensemble) </li> |
| | <li>Psychologie sociale </li> |
| | <li>Analyse de politiques publiques </li> |
| | <li>Réforme éducative </li> |
| | <li>Réforme organisationnelle</li> |
| | </ul> |
| | </td> |
| | </tr> |
| | <tr> |
| | <th>[[Designs statistiques]]</th> |
| | <td> |
| | <ul> |
| | <li>Les pratiques pédagogiques </li> |
| | <li>modèles d’usages</li> |
| | </ul> |
| | </td> |
| | </tr> |
| | <tr> |
| | <th>[[Design comparaison de systèmes similaires]]</th> |
| | <td> |
| | <ul> |
| | <li>Analyse des politiques publiques </li> |
| | <li>Education comparative</li> |
| | </ul> |
| | </td> |
| | </tr> |
| | </table> |
|
| |
|
| * Vous pourriez manquer de sujets
| | Bien entendu, vous pouvez combiner plusieurs de ces approches dans un projet de recherche. Vous pouvez également utiliser différents designs pour la même question afin d’obtenir différents éléments de réponse. |
|
| |
|
| Cependant, la recherche quasi-expérimentale peut aider à tester toutes sortes de variables que vous ne pouvez pas contrôler. On les appelle des ''obstacles à la validité interne''.
| | == Appropriation de la thématique par des doctorants == |
| | Résumés réalisés par des doctorants dans le cadre du Module 3 de [https://tecfa.unige.ch/tecfa/teaching/reset/ RESET-Francophone]. |
| | === Principes, étapes et caractéristiques d’une enquête par sondage === |
| | Résumé réalisé par Corinne Ramillon et Chau Nguyen . <br> |
|
| |
|
| Dans le domaine de l’éducation, les designs quasi-expérimentaux sont particulièrement appréciés dans la recherche évaluation et dans la recherche sur les innovations organisationnelles. Les connaissances en matière de design quasi-expérimental contribuent également à améliorer la qualité des questionnaires dans les enquêtes par sondage (pensez aux variables de contrôle pour tester des hypothèses alternatives).
| | La définition donnée par Milot (2015) pour le recensement et le sondage est la suivante : le recensement est une étude statistique auprès de toute la population. Si le public interrogé est un plus petit échantillon alors il s’agit d’un sondage.<br> |
|
| |
|
| Comme dans la recherche expérimentale, il existe plusieurs designs de recherche quasi-expérimentaux différents. Certains sont plus faciles à mener, mais ils donneront des résultats moins robustes (validité). Nous allons nous intéresser à une partie d’entre eux.
| | Mais alors comment choisir entre sondage et recensement ? |
| ==== Design de la série chronologique interrompue ====
| | Selon Milot (2017) et Amyotte & Pépin (2017), le recensement semble plus réaliste car toute la population est interrogée mais il est plus difficile à réaliser en fonction d’obstacles géographiques : l’étendue du territoire à parcourir peut être très vaste, d’obstacles démographiques : la taille de la population à interroger peut engendrer un surcroît de temps pour la récolte des données, d’obstacles financiers : tant les distances que le nombre de participants peuvent engendrer des coûts fort élevés, des obstacles temporels : le recensement est chronophage et en plus il peut être lourd pour le public visé car il est possible que ce dernier ait subi déjà plusieurs autres recensements. Il existe également un dernier obstacle lié à la méthode de collecte : cette dernière peut être destructrice selon le type de produit étudié (par exemple, si l’on analyse la durée de vie d’une ampoule en la laissant allumée jusqu’à sa fin de vie, les coûts liés au matériel s’avèrent fort importants.). |
|
| |
|
| |
|
| Dans le schéma suivant (Figure 31), correspondant à la série chronologique interrompue, nous cherchons à contrôler l’effet d’autres événements possibles (traitements) sur un groupe expérimental donné.
| | Pour Milot (2017), le sondage est plus économique, sa durée de vie est plus courte que le recensement, il est moins destructeur pour le produit, la population est moins sollicitée, ce qui le rend beaucoup plus favorable pour la récolte des données de la recherche.<br> |
| | Parmi les designs envisageables pour l’enquête par sondage, nous trouvons un premier type, les designs expérimentaux (avec groupes test et témoin, pré et post-tests et distribution aléatoire des sujets obligatoire) et un deuxième type, les designs quasi-expérimentaux (avec seulement le groupe test et distribution aléatoire des sujets pas toujours respectée) qui servent à la réalisation des questionnaires dans les enquêtes par sondage (EduTech Wiki). Amyotte & Pépin (2017) mentionnent également que l’enquête par questionnaire est “une méthode d’investigation très flexible et très polyvalente”. La mise en place de variables de contrôle ne doit pas être oubliée pour tester des hypothèses alternatives (EduTechWiki).<br> |
|
| |
|
|
| | Le troisième type de designs fréquent dans les enquêtes par sondage, sont les designs statistiques. Dans une enquête par sondage selon le design statistique, ce sont des attitudes, des comportements, des expériences, des conditions socio-économiques, etc qui sont recherchés auprès de la population par le biais d’un questionnaire, sans intervention auprès des sujets. Plusieurs méthodes sont possibles : papier, téléphone, entretien, questionnaire en ligne. La plupart du temps, le questionnaire ne peut être administré à l’entièreté de la population mais seulement à un échantillon représentatif, typiquement quelques centaines de personnes.<br> |
| | De plus, il ne faut pas négliger les obstacles à la validité interne de ces types de designs. Une question clé doit être systématiquement posée : quelles sont les autres variables non-contrôlées voire cachées qui pourraient influencer les observables ? Campbell et Stanley (1963) ont élaboré une typologie de ces obstacles dont tout chercheur doit se méfier : l’histoire, la maturation, le test, l’instrumentation, la régression statistique, l’auto- sélection, la mortalité, l’interaction avec la sélection, l’ambiguïté directionnelle, la diffusion ou imitation de traitement et l’égalisation compensatoire.<br> |
| | Une fois que ces variables non-contrôlées voire cachées ont été détectées, il faut également rechercher la validité des données dans ces types de designs. Pour ce faire, Campbell et Stanley (1963) ont défini quatre types de validité : la validité interne, la validité externe, la validité statistique et la validité de construction. Cette typologie est également transposable dans d’autres contextes de recherche telles que les analyses qualitatives structurées ou les designs statistiques.<br> |
| | La structure type d’un plan d’une enquête par sondage se présente ainsi : |
| | Revue de littérature – questions de recherches – cadre d’analyse – approche qualitative possible lors de l’enquête préliminaire – hypothèses – opérationnalisation – définitions des variables (qualitatives, quantitatives continues et quantitatives discrètes) - définitions des échelles (nominale, ordinale, d’intervalles, de rapports) et des questionnaires – définition de la population cible – stratégies d’échantillonnage – identification des méthodes d’analyse – élaboration du questionnaire – test sur quelques sujets – sondage – codage et vérification – construction de l’échelle – analyse statistique des données.<br> |
| | Selon Vilatte (2007), « Le fait auquel renvoie l’objet de l’enquête est soumis à quatre principales transformations qui sont inhérentes à toute démarche d’enquête et de manière plus générale à toute démarche de recherche et qui sont : la délimitation du fait par la définition de l’objet d’étude, la sélection des éléments jugés pertinents au travers des questions, le tri par l’activité de codage et de recodage des informations recueillies, la lecture seulement d’une partie des données. ».<br> |
| | Selon Ghiglione (1987), les objectifs d’un questionnaire d’enquête par sondage sont de plusieurs types : la description, l’estimation et la vérification d’une hypothèse. Amyotte & Pépin (2017) présente les mêmes mais regroupe les deux derniers types sous l’appellation statistique inférentielle.<br> |
| | Quant à Lapointe (2000), il estime qu’il y a plutôt deux types d’enquête par sondage : l’enquête descriptive ou l’enquête causale (avec variable dépendante et indépendante).<br> |
| | D’après Vilatte (2007), l’élaboration d’un tel questionnaire se fait en différentes phases. Il faut tout d’abord définir l’objet de l’enquête, puis les objectifs et les hypothèses, la population ou l’univers de l’enquête, l’échantillon représentatif (par méthode aléatoire ou méthode de quotas). Il faut ensuite rédiger un projet de questionnaire, « sorte de canevas traçant les grands traits du questionnaire » (Vilatte, 2007) puis le tester en le mettant à l’épreuve auprès de quelques personnes. Ce n’est qu’une fois ces étapes passées que l’on peut rédiger la version définitive du questionnaire pour le transmettre à la population choisie en fonction du choix du mode d’administration et de sa présentation (par enquêteur, en auto-administration, par envoi postal, par téléphone, par internet).<br> |
| | Un questionnaire est composé de trois parties : les instructions, les questions, la grille de codification des réponses. |
| | Une fois les données récoltées, il faut passer par la phase de dépouillement et de codage avant de pouvoir analyser les résultats en relation avec les objectifs de l’enquête. Pour terminer, la dernière phase consiste en la rédaction du rapport et son éventuelle publication. |
|
| |
|
| Figure 31: Design de la série chronologique interrompue
| | === Qu’est-ce qu’une recherche quantitative? === |
| | Résumé réalisé par Mahamadou Halilou |
|
| |
|
| L’avantage de ce design est qu’il permet de contrôler quelque peu les tendances (naturelles), i.e. lorsque vous observez ou introduisez un traitement, e.g. une réforme pédagogique, vous ne pouvez pas avoir la certitude que ce sont les éléments de la réforme qui produisent les effets recherchés: les changements peuvent être dus à autre chose, comme une tendance générale vers de meilleures capacités au sein d’une population d’étudiants.
| | Creswell (2014), répond à cette question en ces termes : La recherche quantitative cherche à tester une théorie en examinant les relations existant entre les variables. Ces variables peuvent être mesurées, par des instruments, afin de générer des données numériques qui vont pouvoir être analysées avec des procédures statistiques. De plus, une étude quantitative a une structure fixe comportant une introduction, la littérature et la théorie, les méthodes, les résultats et la discussion (Creswell, 2014, p. 247). |
|
| |
|
| Les problèmes de ce design sont les suivants: vous ne pouvez pas contrôler des événements externes simultanés (X<sub>2</sub> se produisant en même temps que X<sub>1</sub>).
| | Mais faisons attention aux erreurs qui peuvent entacher ces recherches voir les entamer : quelles sont-elles ? |
|
| |
|
| Voici un exemple de l’effet de la pédagogie fondée sur les TIC en classe. Les méthodes pédagogiques fondées sur les TIC que vous étudiez peuvent avoir été introduites en même temps que d’autres innovations pédagogiques. Qu’est-ce qui a le plus influencé la performance globale; s’agit-il des TIC ou des autres innovations?
| | Première erreur : Vous croyez qu’un lien statistique entre deux variables est pertinent, car il existe une bonne corrélation entre ces deux variables, mais «en réalité» cette corrélation n’existe pas. Il se peut que la raison principale soit une variable qui influence les deux. |
|
| |
|
| Il existe également des difficultés pratiques: il est parfois impossible d’obtenir des données sur les années écoulées. Parfois, vous n’avez pas suffisamment de temps à disposition (votre recherche se termine trop tôt et les décideurs sont toujours pressés pour attendre des résultats sur le long terme).
| | En termes complexes: vous rejetez à tort l’hypothèse nulle (pas de lien entre les variables) |
|
| |
|
|
| | Seconde erreur : Vous croyez qu’un lien n’existe pas ... mais «en réalité» il y a bien relation entre les deux variables. |
|
| |
|
| Exemple: ''les pédagogies fondées sur les TIC affirment souvent pouvoir améliorer les facultés métacognitives''. Avez-vous des tests pour les années 1-2-3? Pouvez-vous attendre l’année +3? Pouvez-vous tester la même population lorsque les sujets entrent à l’université ou trouvent des emplois dans lesquels leurs facultés métacognitives ont plus d’importance?
| | Ex : vous calculez un coefficient de corrélation et les résultats indiquent qu’il est très faible ou insignifiant. Un lien pourrait toutefois exister. La relation n’était peut-être pas linéaire, ou peut-être qu’une autre variable a causé un effet d’interaction... |
|
| |
|
|
| | En termes plus complexes: vous acceptez à tort l’hypothèse nulle |
|
| |
|
| ''Exemples de séries chronologiques''
| | Une chose à retenir : Les méthodes statistiques vous permettent de tester d’autres hypothèses et par conséquent de diminuer les risques d’erreurs de validité interne. |
|
| |
|
| Nous allons nous intéresser de manière informelle à quelques ''''patterns'' (modèles) de séries chronologiques'', i.e. des mesures qui évoluent dans le temps et qui peuvent confirmer ou infirmer des hypothèses sur une intervention ''X''.
| | == Pratique == |
|
| |
|
| | Une fois que vous avez lu les introductions aux designs expérimentaux, quasi-expérimentaux et statistiques, vous pouvez revenir ici et pratiquer. Enfin, personne ne vous empêchera de tester maintenant votre savoir-faire... |
| | | |
| | {{bloc pratiquer| |
|
| |
|
| Figure 32: Exemple de série chronologique interrompue
| | '''A) Répondez aux questions:''' |
| | # Quelle est la différence principale entre un design expérimental et un design quasi-expérimental? |
| | # Un design quasi-expérimental et une enquête par sondage ont certains éléments en commun. Lesquels? |
| | # Listez les étapes importantes d’une enquête par sondage. |
|
| |
|
| Dans la Figure 32, O<sub>2</sub>, O<sub>3</sub>, etc., sont des données d’observation (e.g. annuelles). X est le traitement (intervention).
| | '''B) Concevez!''' |
|
| |
|
| 1. A. Un effet statistique est probable
| | # Esquissez un design quasi-expérimental pour répondre à la question suivante : |
| | #* Dans un programme de formation à distance, est-ce qu’un tutorat de bonne qualité augmente la satisfaction à l’égard du programme et diminue le taux d’abandon des étudiants? |
| | # Formulez une hypothèse de recherche qui traite du lien entre la participation des étudiants en ligne et l’accompagnement apportée aux étudiants. |
| | #* Elaborez pour chacune des deux variables une série de quatre questions. |
| | #* Justifiez chaque question et les éléments de réponse. |
| | : Astuce: vous pourriez trouver des outils de sondage dans la littérature. |
|
| |
|
| * Exemple: ''les taux d’étudiants qui abandonnent les études ont baissé avec l’introduction de forums sur le serveur d’apprentissage en ligne.''
| | '''C) Etude de cas ''' |
|
| |
|
| * Toutefois, vous devez vous méfier de vos interprétations: vous n’avez pas connaissance d’une éventuelle ''autre intervention'' qui pourrait avoir eu lieu en même temps. | | * Téléchargez Poellhuber, B., Chomienne, M., Karsenti, T. (2011). L’effet du tutorat individuel sur le sentiment d’auto-efficacité et la persévérance en formation à distance. Revue des sciences de l'éducation, 37 (3), pp. 569-593. DOI: 10.7202/1014758ar |
|
| |
|
| 2. B. Un effet statistique de type feu de paille ou «éphémère»
| | # Identifiez la question de recherche centrale |
| | | # Expliquez comment le sentiment d’auto-efficacité et la persévérance ont été mesurés. |
| * Exemple: ''l’enseignement s’est amélioré lorsque nous avons introduit X, puis tout est redevenu comme avant.''
| | # Résumez les résultats. |
| | | }} |
| * Il y a un effet constaté suite à l’intervention mais après un certain temps, la cause «s’épuise», e.g. une motivation en forte hausse suite à l’introduction des TIC dans le programme, qui ne s’installe pas forcément dans la durée.
| | == Références == |
| | | Amyotte, L. & Pépin, J.-N. (2017). Méthodes quantitatives : Applications à la recherche en sciences humaines. 4ème édition. Montréal : Pearson. Chapitre 1, pp. 02-40. |
| 3. C. Tendance naturelle (pas d’effet)
| | <br> |
| | | Campbell, D. & Stanley, J. (1963). Experimental and quasi-experimental designs for research. Boston : Houghton Mifflin Company |
| * Vous pouvez contrôler cette erreur en regardant au-delà de O<sub>4</sub> et O<sub>5</sub>!
| | <br> |
| | | Campion, B. (2012). Etude de l’apport de la non-linéarité au récit éducatif. Document numérique 3/2012 (Vol 15), p.49-70. Repéré à https://dn.revuesonline.com/gratuit/DN15_3_05_Campion.pdf |
| 4. D. Confusion entre les effets de cycle et l’intervention
| | <br> |
| | | Milot, J. (2017). La méthode scientifique. Capsule Vidéo. Québec : Collège de Maisonneuve. Repéré à https://www.youtube.com/watch?v=1EI1zdZZOxc&list=PLzzOZc8nEo7rrKm5xb5a2teE6BYQNKulZ&index=1 |
| * Exemple: ''Le gouvernement a introduit des mesures pour lutter contre le chômage, mais il se peut que l’amélioration de la situation s’explique par un cycle économique naturel. Vous pouvez le vérifier en analysant l’ensemble de la série chronologique.''
| |
| | |
| 5. E. Effet retardé
| |
| | |
| * Exemple: ''Les effets de gros investissements dans l’éducation sur la croissance économique (peuvent se manifester plusieurs décennies plus tard)''
| |
| | |
| 6. F. Effet d’accélération de tendance
| |
| | |
| * Difficile à différencier de G, i.e. la courbe pourrait connaître un léger changement, mais il pourrait uniquement s’agir d’une variante de l’évolution naturelle exponentielle.
| |
| | |
| 7. G. Evolution naturelle exponentielle
| |
| | |
| * Identique à (C).
| |
| ==== Obstacles à la validité interne ====
| |
|
| |
| La question clé à vous poser de manière récurrente est: ''''quelles sont les autres variables qui pourraient influencer mes/nos expériences?'''' Campbell et Stanley (1963) ont élaboré une première typologie d’obstacles dont vous devez vous méfier:
| |
| | |
| <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width="96%"
| |
| style='width:96.58%;margin-left:9.0pt;border-collapse:collapse;border:none'> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;background:#FFFF99;
| |
| padding:3.75pt 6.0pt 3.75pt 6.0pt'> | |
| | |
| Type d’obstacle </td> <td width="72%" valign=top style='width:72.84%;border:solid windowtext 1.0pt;
| |
| border-left:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Définition et exemple </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Histoire </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Un autre événement que X se produit entre les mesures.
| |
| | |
| Exemple: l’introduction des TIC a eu lieu en même temps que l’introduction de l’enseignement par projet. </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Maturation </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| L’objet a changé «naturellement» entre les mesures
| |
| | |
| Exemple: ce cours a-t-il changé votre connaissance de la méthodologie ou est-ce simplement dû au fait que vous avez commencé à travailler sur votre projet de thèse? </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Test </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| La mesure a eu un effet sur l’objet
| |
| | |
| Exemple: vos entretiens précédant l’intervention ont eu un effet sur les gens (e.g. les enseignants ont changé de comportement avant que vous ne les invitiez à des séances de formation) </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Instrumentation </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| La méthode de mesure a changé
| |
| | |
| Exemple: les capacités de lecture sont définies différemment. e.g. de nouveaux tests favorisent la compréhension textuelle. </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Régression statistique </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Les différences se seraient réduites naturellement
| |
| | |
| Exemple: une école introduit de nouvelles mesures disciplinaires suite à l’agression d’un enseignant par des élèves. Il se peut que de tels événements ne se seraient pas reproduits l’année suivante, même sans intervention. </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| (Auto) sélection </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Les sujets sont auto-sélectionnés pour le traitement
| |
| | |
| Exemple: vous introduisez de nouvelles pédagogies fondées sur les TIC et les résultats sont très bons (il se peut que seuls de bons enseignants aient participé à ces expériences). </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Mortalité </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Les sujets ne sont pas les mêmes
| |
| | |
| Exemple: une école introduit des mesures spéciales pour motiver les «élèves difficiles». Après 2-3 ans, les taux d’abandon diminuent. L’école est peut-être située dans une zone qui connaît des changements socio-démographiques rapides (différentes personnes). </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Interaction avec<br> sélection </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Exemple d’effets combinés: le groupe contrôle montre une maturation différente </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Ambiguté directionnelle <br> <br> </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| L’effet est-il dû au traitement ou à des sujets différents?
| |
| | |
| Exemple: les performances d’employés sont-elles meilleures dans une organisation à hiérarchie «horizontale» / participative / équipée de TIC, ou est-ce qu’une telle organisation attire des individus plus actifs et plus efficaces? </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Diffusion ou imitation de traitement </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Le traitement a un effet sur le groupe contrôle
| |
| | |
| Exemple: une unité académique promeut un enseignement hybride moderne et attire des étudiants provenant d’une vaste zone géographique. Une unité de contrôle peut également bénéficier de cet effet. </td> </tr> <tr style='page-break-inside:avoid'> <td valign=top style='border:solid windowtext 1.0pt;border-top:none;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Egalisation compensatoire </td> <td width="72%" valign=top style='width:72.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Le groupe contrôle observe le groupe expérimental
| |
| | |
| Exemple: les sujets qui ne reçoivent aucun traitement réagissent en se comportant différemment. </td> </tr> </table>
| |
| | |
| Tableau 17: Obstacles à la validité interne
| |
| | |
| Une règle efficace consiste à réfléchir et à chercher d’autres explications susceptibles d’expliquer un phénomène. Toutefois, de bons designs de recherche peuvent également permettre de produire une recherche valide. Voyons à présent quelques designs qui tentent de contrôler de tels obstacles à la validité interne.
| |
| | |
| ==== Design avec groupe contrôle non équivalent ====
| |
|
| |
| | |
| Ce design adopte des comparaisons entre deux groupes contrôle similaires (mais pas équivalents). L’avantage de ce design réside dans son efficacité à détecter d’éventuelles influences de causes extérieures (i.e. des causes différentes des causes liées à l’intervention).
| |
| | |
|
| |
| | |
| Figure 33: Design avec groupe contrôle non équivalent
| |
| | |
| Si O<sub>2</sub> ― O<sub>1</sub> est similaire à O<sub>4</sub> ― O<sub>3</sub>, nous pouvons rejeter l’hypothèse selon laquelle O<sub>2</sub> ― O<sub>1</sub> est du à X, ou nous pouvons corroborer l’effet expérimental de X (Figure 33).
| |
| | |
| Voici les problèmes et les désavantages possibles de ce design:
| |
| | |
| * Mauvais contrôle des tendances naturelles, comme discuté dans le cadre de la série chronologique interrompue.
| |
| | |
| * Trouver des groupes équivalents n’est pas facile dans certains contextes «réels».
| |
| | |
| * Vous pourriez également rencontrer des effets d’interactions entre les groupes, e.g. l’imitation du groupe expérimental par le groupe contrôle.
| |
| | |
| Ce design avec groupe contrôle non équivalent n’est qu’un type de design de contrôle. Il est parfois possible d’utiliser des designs de contrôle aléatoires. Nous pouvons également créer deux ou trois designs de facteurs qui peuvent tester les interactions de variables indépendantes (facteurs). La conception et l’analyse de tels designs plus complexes sort cependant du cadre de cette introduction. Pour en savoir plus, vous pouvez consulter les ouvrages de Campbell, Stanley, Cook et Shadish. Par exemple: [https://depts.washington.edu/methods/readings/Shadish.pdf https://depts.washington.edu/methods/readings/Shadish.pdf]
| |
| | |
|
| |
| ==== Expérience et effets d’imitation ====
| |
|
| |
| | |
| Voici un exemple d’effet d’imitation (Figure 34). Dans le cadre d’un programme diplômant, nous introduisons une plateforme d’apprentissage dans un seul des cours. Nous nous intéressons alors à trois effets: le coût, la satisfaction des étudiants et le respect des délais en les comparant à un cours similaire donné par un autre enseignant. <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width=576
| |
| style='width:432.1pt;border-collapse:collapse;border:none'> <tr style='height:42.0pt'> <td width=189 style='width:141.5pt;border:solid windowtext 1.0pt;padding:
| |
| 6.0pt 1.0pt 6.0pt 1.0pt;height:42.0pt'>
| |
| | |
| '''' </td> <td width=151 style='width:4.0cm;border:solid windowtext 1.0pt;border-left:
| |
| none;padding:4.0pt 1.0pt 4.0pt 1.0pt;height:42.0pt'>
| |
| | |
| Cours A
| |
| | |
| Introduction d’une plateforme d’apprentissage </td> <td width=132 style='width:99.25pt;border:solid windowtext 1.0pt;border-left:
| |
| none;padding:4.0pt 1.0pt 4.0pt 1.0pt;height:42.0pt'>
| |
| | |
| Cours B
| |
| | |
| Pas d’introduction de plateforme </td> <td width=104 style='width:77.95pt;border:solid windowtext 1.0pt;border-left:
| |
| none;padding:6.0pt 1.0pt 6.0pt 1.0pt;height:42.0pt'>
| |
| | |
| '''' </td> </tr> <tr style='height:23.0pt'> <td width=189 style='width:141.5pt;border:solid windowtext 1.0pt;border-top:
| |
| none;padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| Effet 1:coûts </td> <td width=151 style='width:4.0cm;border-top:none;border-left:none;border-bottom:
| |
| solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;padding:4.0pt 1.0pt 4.0pt 1.0pt;
| |
| height:23.0pt'>
| |
| | |
| augmente </td> <td width=132 style='width:99.25pt;border-top:none;border-left:none;
| |
| border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| stable </td> <td width=104 rowspan=3 style='width:77.95pt;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| comparaison horizontale
| |
| | |
| des résultats </td> </tr> <tr style='height:23.0pt'> <td width=189 style='width:141.5pt;border:solid windowtext 1.0pt;border-top:
| |
| none;padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| E 2: satisfaction des étudiants </td> <td width=151 style='width:4.0cm;border-top:none;border-left:none;border-bottom:
| |
| solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;padding:4.0pt 1.0pt 4.0pt 1.0pt;
| |
| height:23.0pt'>
| |
| | |
| augmente </td> <td width=132 style='width:99.25pt;border-top:none;border-left:none;
| |
| border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| augmente </td> </tr> <tr style='height:23.0pt'> <td width=189 style='width:141.5pt;border:solid windowtext 1.0pt;border-top:
| |
| none;padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| E 3: respect des délais (pour la remise des travaux) </td> <td width=151 style='width:4.0cm;border-top:none;border-left:none;border-bottom:
| |
| solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;padding:4.0pt 1.0pt 4.0pt 1.0pt;
| |
| height:23.0pt'>
| |
| | |
| meilleur </td> <td width=132 style='width:99.25pt;border-top:none;border-left:none;
| |
| border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| padding:4.0pt 1.0pt 4.0pt 1.0pt;height:23.0pt'>
| |
| | |
| stable </td> </tr> </table>
| |
| | |
| Figure 34: Exemple d'effet d'imitation
| |
| | |
| Pour pratiquer:
| |
| | |
| Pourquoi la satisfaction des étudiants pourrait-elle également augmenter chez les étudiants du cours B?
| |
| ==== Série chronologique comparative ====
| |
|
| |
| | |
| L’un des designs de recherche quasi-expérimentale les plus puissants se sert de séries chronologiques comparatives (Figure 35). Ce design est une combinaison de la série chronologique interrompue et du groupe contrôle non équivalent, que nous avons présentés précédemment.
| |
| | |
|
| |
| | |
| Figure 35: Série chronologique comparative
| |
| | |
| Ce design est efficace pour contrôler plusieurs obstacles à la validité car il permetde:
| |
| | |
| 1. comparer différents groupes (situations) et aussi de contrôler d’autres variables intevening;
| |
| | |
| 2. faire une série de pré- et de post-observations (tests) pour contrôler des tendances naturelles et un effet statistique de type feu de paille ou «éphémère».
| |
| | |
| Les difficultés de ce design sont pratiques. Il n’est pas facile (et parfois impossible) de:
| |
| | |
| 1. trouver des groupes comparables,
| |
| | |
| 2. trouver des groupes avec plus que un ou quelques cas,
| |
| | |
| 3. trouver des données (en particulier des données passées ou futures),
| |
| | |
| 4. de contrôler des interventions simultanées au point X.
| |
| ==== La validité dans les designs quasi expérimentaux ====
| |
|
| |
| | |
| Généralisons à présent la discussion et abordons les problèmes de causalité et leur validité (Tableau 18).
| |
| | |
| Selon Campbell & Stanley (1963), il existe quatre types de validité: <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0
| |
| style='margin-left:9.0pt;border-collapse:collapse;border:none'> <tr style='page-break-inside:avoid'> <td width=157 valign=top style='width:117.5pt;border:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Type de validité </td> <td width=406 valign=top style='width:304.75pt;border:solid windowtext 1.0pt;
| |
| border-left:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| </td> </tr> <tr style='page-break-inside:avoid'> <td width=157 valign=top style='width:117.5pt;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Validité interne </td> <td width=406 valign=top style='width:304.75pt;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| «Elle désigne l’aptitude des données collectées à représenter réellement le phénomène étudié. Ceci concerne aussi bien la pertinence du choix des catégories utilisées pour coder les données issues d’une observation systématique que le fait de s’assurer que les traitements appliqués dans une étude expérimentale expliquent bien les changements de comportement manifestés par les sujets (si on peut les expliquer autrement la validité interne n’est pas bonne)». [http://ute.umh.ac.be/methodes/partie1.htm http://ute.umh.ac.be/methodes/partie1.htm]
| |
| | |
| Elle concerne le design (stratégie d’investigation) de votre recherche
| |
| | |
| Vous devez démontrer que les causes que vous posez comme causes sont «réelles» et que toute autre explication est fausse.
| |
| | |
| C’est le type de validité le plus important. </td> </tr> <tr style='page-break-inside:avoid'> <td width=157 valign=top style='width:117.5pt;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Validité externe </td> <td width=406 valign=top style='width:304.75pt;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| «Elle désigne le degré selon lequel les résultats d’une étude peuvent être généralisés à une population plus large. Cette définition a une signification différente selon qu’on s’inscrit dans le paradigme quantitatif ou qualitatif. Ainsi, dans une recherche quantitative, c’est la conception même de la recherche basée sur un échantillonnage représentatif des sujets qui va assurer, dans une mesure plus ou moins grande, cette validité externe.»[http://ute.umh.ac.be/methodes/partie1.htm http://ute.umh.ac.be/methodes/partie1.htm]
| |
| | |
| La question à vous poser: pouvez-vous généraliser?
| |
| | |
| Ceci n’est pas facile, car vous pourriez ne pas avoir conscience de variables «favorables», e.g. le «bon enseignant» avec lequel vous avez travaillé ou le fait que les choses étaient bien plus faciles dans votre école privée...
| |
| | |
| Comment pouvez-vous être certain que vos expériences d’introduction des TIC dans une situation donnée et couronnées de succès seraient également couronnées de succès dans des situations similaires (ou peu similaires)? </td> </tr> <tr style='page-break-inside:avoid'> <td width=157 valign=top style='width:117.5pt;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Validité statistique </td> <td width=406 valign=top style='width:304.75pt;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| ... vos relations statistiques sont-elles significatives?
| |
| | |
| Pour une analyse simple, ce type de validité n’est pas difficile. Faites en sorte d’utiliser les bonnes statistiques et fiez-vous à ces statistiques. </td> </tr> <tr style='page-break-inside:avoid'> <td width=157 valign=top style='width:117.5pt;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| Validité de construction </td> <td width=406 valign=top style='width:304.75pt;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| ...est-ce que l’opérationnalisation de vos concepts est solide?
| |
| | |
| Vos dimensions sont-elles justes?
| |
| | |
| Vos indicateurs mesurent-ils vraiment ce que vous cherchez à savoir? </td> </tr> </table>
| |
| | |
| Tableau 18: Typologie de la validité (Stanley et al.)
| |
| | |
| ''''Important'''': Cette typologie est également utile dans d’autres contextes, e.g. des analyses qualitatives structurées ou des designs statistiques. Dans la plupart des autres designs de recherche empirique, vous ''devez'' également traiter ces problèmes.
| |
| | |
| ==== Exemple de travail de recherche quasi-expérimental[#_msocom_6 [B6]] ====
| |
|
| |
| | |
| Questions de recherche
| |
| | |
| Méthode
| |
| === Designs avec méthodes statistiques ===
| |
|
| |
| | |
| D’une certaine manière, les designs statistiques sont conceptuellement liés aux designs expérimentaux. Les designs statistiques formulent des lois, i.e. les cas individuels n’ont aucun intérêt (à moins que quelque chose ne se passe mal). L’avantage de ce design est qu’il est possible de tester un nombre relativement important de lois (hypothèses) avec des données statistiques. On qualifie souvent de telles analyses de ''''corrélationnelles, ''''car elles ont pour but de démontrer des relations statistiques entre des variables.
| |
| | |
| De tels designs de recherche s’appuient sur un raisonnement théorique antérieur, car:
| |
| | |
| 1. les mesures, i.e. les questionnaires peuvent ne pas être aussi fiables que cela:
| |
| | |
| * ce que les gens disent peut ne pas correspondre à ce qu’ils font
| |
| | |
| * ce que vous demandez pourrait ne pas mesurer ce que vous voulez observer
| |
| | |
| 2. il y a une surdétermination statistique,
| |
| | |
| * vous pouvez trouver des corrélations entre variables, mais comme nous l’avons vu précédemment, les corrélations ne sont pas nécessairement synonymes de causalités.
| |
| | |
| 3. vous ne pouvez pas obtenir une «image inductive» en posant une dizaine de questions fermées.
| |
| | |
| Le design de recherche dominant est mené de façon descendante et comprend en partie la doctrine du rationalisme critique de Popper, que l’on appelle également le falsificationnisme. Comment procéder?
| |
| | |
| 1. Commencez par formuler des hypothèses (des modèles qui contiennent des variables et des relations que vous pouvez mesurer)
| |
| | |
| 2. Mesurez les variables (e.g. à l’aide d’un questionnaire et/ou d’un test)
| |
| | |
| 3. Testez alors les relations à l’aide d’outils statistiques
| |
| | |
| 4. Testez alors des hypothèses alternatives selon le même principe. Vous devez également montrer que vos hypothèses ne sont pas falsifiables.
| |
| | |
| Le design statistique le plus utilisé en technologie éducative est l’enquête par sondage.
| |
| ==== Introduction à l’enquête par sondage ====
| |
|
| |
| | |
| La méthode de l'enquête par sondage a maintenant plus de soixante ans et est bien documentée dans les manuels de méthodologie. Elle consiste à recueillir des informations auprès des gens sur leurs attitudes, comportements, expériences, conditions socio-économiques, etc. par le biais d’un questionnaire. Ce questionnaire peut être administré au format papier, lors d’un entretien présentiel, par téléphone ou par internet. Généralement l'enquête par sondage cherche à tester une théorie sur une assez grande population (e.g. "les étudiants de sciences sociales" ou "les adolescents à la fin de l'enseignement obligatoire dans les pays de l'OCDE"). Le questionnaire ne peut être administré à l’entièreté d’une population et seul un échantillon représentatif, typiquement quelques centaines de personnes, est sollicité pour répondre aux questions.
| |
| | |
| Voici la structure type d’un plan de recherche pour une enquête par sondage (Tableau 19): <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0
| |
| style='margin-left:9.0pt;border-collapse:collapse;border:none'> <tr style='page-break-inside:avoid'> <td width=563 valign=top style='width:422.25pt;border:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| 1. Revue de littérature menant aux questions de recherche générales et/ou au cadre d’analyse
| |
| | |
| 2. Vous pouvez utiliser une approche qualitative dans le cadre d’une étude préliminaire pour étudier de nouveaux domaines de recherche et les citer ici.
| |
| | |
| 3. Définition des hypothèses
| |
| | |
| 4. Opérationnalisation des hypothèses, e.g. définition des échelles et des questionnaires liés
| |
| | |
| 5. Définition de la population mère
| |
| | |
| 6. Stratégies d’échantillonnage
| |
| | |
| 7. Identification des méthodes d’analyse </td> </tr> </table>
| |
| | |
| Tableau 19: Eléments d’un plan de recherche pour une enquête par sondage
| |
| | |
| La mise en oeuvre de ce type de recherche (en dehors de la rédaction) se déroule en cinq étapes (Tableau 20): <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0
| |
| style='margin-left:9.0pt;border-collapse:collapse;border:none'> <tr style='page-break-inside:avoid'> <td width=563 valign=top style='width:422.25pt;border:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt'>
| |
| | |
| 1. Elaboration du questionnaire (avec des entrées de préférence provenant d’échelles publiées)
| |
| | |
| 2. Test du questionnaire avec 2-3 sujets
| |
| | |
| 3. Sondage (entretiens présentiels, en ligne ou par écrit)
| |
| | |
| 4. Codage et vérification + construction d’échelle
| |
| | |
| 5. Analyse statistique des données </td> </tr> </table>
| |
| | |
| Tableau 20: Mise en oeuvre d’une enquête par sondage
| |
| | |
| Conseils pour la rédaction:
| |
| | |
| 1. Séparez la présentation des résultats de la discussion
| |
| | |
| 2. Comparez toujours vos résultats à la théorie
| |
| | |
| 3. Assurez-vous de rendre votre texte lisible, e.g. placez vos résultats dans des tableaux
| |
| ==== Niveaux de raisonnement et obstacles à la validité ====
| |
|
| |
| | |
| Nous avons précédemment vu qu’il existe un écart entre le raisonnement théorique et les données empiriques. En tant que chercheur, vous devez être en mesure de formuler des questions de recherche générales à un niveau global et être capable de les relier, par l’intermédiaire de l’opérationnalisation, à des indicateurs [#_msocom_7 [B7]]et indices ][#_msocom_8 [B8]]précis au niveau des données. Vous devez également comprendre que l’interprétation de données statistiques est complexe et requiert un raisonnement et des connaissances sur les obstacles à la validité interne (Tableau 21). <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width="96%"
| |
| style='width:96.76%;margin-left:9.0pt;border-collapse:collapse;border:none'> <tr style='page-break-inside:avoid;height:40.75pt'> <td width="27%" valign=top style='width:27.0%;border:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:40.75pt'>
| |
| | |
| ''Niveau de raisonnement '' </td> <td width="22%" valign=top style='width:22.84%;border:solid windowtext 1.0pt;
| |
| border-left:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:40.75pt'>
| |
| | |
| ''Variables '' </td> <td width="26%" valign=top style='width:26.94%;border:solid windowtext 1.0pt;
| |
| border-left:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:40.75pt'>
| |
| | |
| ''Cas'' </td> <td width="23%" valign=top style='width:23.22%;border:solid windowtext 1.0pt;
| |
| border-left:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:40.75pt'>
| |
| | |
| ''Relations (causes)'' </td> </tr> <tr style='page-break-inside:avoid;height:51.8pt'> <td width="27%" valign=top style='width:27.0%;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:51.8pt'>
| |
| | |
| ''Théorie'' </td> <td width="22%" valign=top style='width:22.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| concept /catégorie </td> <td width="26%" valign=top style='width:26.94%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| dépendent de la portée de votre théorie </td> <td width="23%" valign=top style='width:23.22%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| sont exprimées verbalement à un niveau de langue élevé </td> </tr> <tr style='page-break-inside:avoid;height:51.8pt'> <td width="27%" valign=top style='width:27.0%;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:51.8pt'>
| |
| | |
| ''Hypothèse '' </td> <td width="22%" valign=top style='width:22.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| variables et valeurs (attributs) </td> <td width="26%" valign=top style='width:26.94%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| population mère (élèves, écoles) </td> <td width="23%" valign=top style='width:23.22%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| clairement énoncées comme des causalités ou des cooccurrences </td> </tr> <tr style='page-break-inside:avoid;height:38.85pt'> <td width="27%" valign=top style='width:27.0%;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:38.85pt'>
| |
| | |
| ''Opérationnalisation '' </td> <td width="22%" valign=top style='width:22.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:38.85pt'>
| |
| | |
| dimensions et indicateurs </td> <td width="26%" valign=top style='width:26.94%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:38.85pt'>
| |
| | |
| échantillonnage suffisamment bon </td> <td width="23%" rowspan=3 valign=top style='width:23.22%;border-top:none;
| |
| border-left:none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:38.85pt'>
| |
| | |
| sont des relations statistiques entre des variables statistiques (e.g. échelles composées, variables socio-démographiques) </td> </tr> <tr style='page-break-inside:avoid;height:51.8pt'> <td width="27%" valign=top style='width:27.0%;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:51.8pt'>
| |
| | |
| ''Mesure '' </td> <td width="22%" valign=top style='width:22.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| indicateurs observés (e.g. questions de sondage) </td> <td width="26%" valign=top style='width:26.94%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:51.8pt'>
| |
| | |
| sujets dans l’échantillon </td> </tr> <tr style='page-break-inside:avoid;height:78.7pt'> <td width="27%" valign=top style='width:27.0%;border:solid windowtext 1.0pt;
| |
| border-top:none;background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;
| |
| height:78.7pt'>
| |
| | |
| ''Statistiques '' </td> <td width="22%" valign=top style='width:22.84%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:78.7pt'>
| |
| | |
| mesures (e.g. réponses aux questions), échelles (mesures composées) </td> <td width="26%" valign=top style='width:26.94%;border-top:none;border-left:
| |
| none;border-bottom:solid windowtext 1.0pt;border-right:solid windowtext 1.0pt;
| |
| background:#FFFF99;padding:3.75pt 6.0pt 3.75pt 6.0pt;height:78.7pt'>
| |
| | |
| données (variables numériques) </td> </tr> </table>
| |
| | |
| Tableau 21: Niveaux de raisonnement dans une approche avec méthodes statistiques
| |
| | |
| ''Typologie des erreurs de validité interne''
| |
| | |
| ''''Erreur de type 1: ''''Vous croyez qu’un lien statistique entre deux variables est pertinent, car il existe une bonne corrélation entre ces deux variables, mais «en réalité» cette corrélation n’existe pas. Il se peut que la raison principale soit une variable qui influence les deux.
| |
| | |
| * En termes complexes: vous rejetez à tort l’hypothèse nulle [#_msocom_9 [B9]](pas de lien entre les variables)
| |
| | |
| ''''Erreur de type 2: ''''Vous croyez qu’un lien n’existe pas ... mais «en réalité» il y a bien relation entre les deux variables.
| |
| | |
| * E.g., vous calculez un coefficient de corrélation et les résultats indiquent qu’il est très faible ou insignifiant. Un lien pourrait toutefois exister. La relation n’était peut-être pas linéaire, ou peut-être qu’une autre variable a causé un effet d’interaction...
| |
| | |
| * En termes plus complexes: vous acceptez à tort l’hypothèse nulle
| |
| | |
| Les méthodes statistiques vous permettent de tester d’autres hypothèses et par conséquent de diminuer les risques d’erreurs de validité internes. Comme toujours: réfléchissez!
| |
| ==== Exemples d’enquêtes par sondage ====
| |
|
| |
| | |
| ''Exemple''[#_msocom_10 [B10]]'': Facteurs qui favorisent l’utilisation des TIC par les enseignants''
| |
| | |
| Luis Gonzalez (2004): Etude pilote sur la mise en oeuvre et les perceptions des TIC. Mémoire de Master en technologie éducative, Université de Genève.
| |
| | |
| [http://tecfaetu.unige.ch/staf/staf-h/gonzalez/staf25/memoire-STAF.pdf http://tecfaetu.unige.ch/staf/staf-h/gonzalez/staf25/memoire-STAF.pdf]
| |
| | |
| Le but principal de ce travail de recherche, est «d’étudier les facteurs qui favorisent l’utilisation des TIC par les enseignants».
| |
| | |
| ''Facteurs:''
| |
| | |
| L’auteur définit 8 facteurs et postule qu’il existe des relations entre eux (Figure 36):
| |
| | |
|
| |
| | |
| Figure 36: Relation entre les facteurs (Mémoire L. Gonzalez, 2004, p. 18)
| |
| | |
| ''Hypothèses'':
| |
| | |
| Voici un extrait de ce mémoire (pp. 18-19) :
| |
| | |
| “Mon hypothèse principale postule l’existence d’une corrélation entre les facteurs suivants et la
| |
| | |
| mise en oeuvre des TIC par les enseignants:
| |
| | |
| * Le type de support offert par le cadre institutionnel
| |
| | |
| * Leurs compétences pédagogiques
| |
| | |
| * Leurs compétences techniques
| |
| | |
| * La formation reçue, que ce soit la formation de base ou la formation continue
| |
| | |
| * Leur sentiment d’auto-efficacité
| |
| | |
| * Leur perception des technologies
| |
| | |
| * Leur perception de l’usage pédagogique des TIC
| |
| | |
| * Leur rationalisation et digitalisation pédagogique
| |
| | |
| Les hypothèses secondaires sont les suivantes:
| |
| | |
| * La perception de l’usage pédagogique est corrélée avec les compétences pédagogiques de l’enseignant
| |
| | |
| * La perception des technologies est corrélée avec celle de l’usage pédagogique
| |
| | |
| * La dimension de radicalisation et de digitalisation pédagogique est corrélée avec la perception des technologies
| |
| | |
| * La formation est corrélée avec les compétences pédagogiques et techniques
| |
| | |
| * Le sentiment d’auto-efficacité de est corrélé avec les compétences pédagogiques et techniques
| |
| | |
| * La dimension de radicalisation et de digitalisation pédagogique est corrélée avec le sentiment d’auto-efficacité”
| |
| | |
| ''Méthode d’échantillonnage (p. 20)''
| |
| | |
| * Echantillon représentatif de futurs enseignants du primaire (étudiants), N = 48
| |
| | |
| * Echantillon non-représentatif d’enseignants du primaire, N = 38
| |
| | |
| * Un e-mail a été envoyé à tous les enseignants de Genève disposant d’une adresse électronique, auto-sélection (!)
| |
| | |
| * Remarque: le questionnaire était très long, quelques enseignants qui avaient commencé à le remplir ont abandonné après un certain temps.
| |
| | |
| * Ce type d’échantillonnage convient à une étude pilote ou à un petit travail de mémoire de Master
| |
| | |
| ''Design du questionnaire''
| |
| | |
| Dans la mesure du possible, les définitions de chaque «domaine conceptuel» (voir ci-dessus) ainsi que les séries de questions et les échelles ont été adaptées depuis la littérature.
| |
| | |
| ''Collecte de données''
| |
| | |
| Les données ont été recueillies par l’intermédiaire d’un questionnaire en ligne (à l’aide de l’interface phpESP)
| |
| | |
| ''Purification de l’instrument''
| |
| | |
| Cela a été fait par «une analyse factorielle et un regroupement des items définissant des indices susceptibles de résumer les variables» (i.e. les 8 facteurs) p. 21. Remarque: si vous utilisez des instruments publiés et sérieusement testés, cette opération n’est pas nécessaire!
| |
| | |
| ''Perception de l’usage pédagogique des TIC''
| |
| | |
| Dans le questionnaire, ce concept est mesuré avec deux ''séries de questions'' (échelles).
| |
| | |
| La perception de l’utilisation pédagogique des TIC se mesure avec deux séries de questions: une première série interroge sur l’attitude des individus à l’égard de «déclarations officielles» sur l’utilisation des ressources informatiques dans l’éducation. La deuxième série mesure l’utilité attribuée à différents types de ressources utilisant l’informatique.
| |
| | |
| Les deux séries de questions utilisent les mêmes types de réponses: 1=pas du tout d’accord, 2=pas vraiment d’accord, 3=plutôt d’accord, 4=tout à fait d’accord.
| |
| | |
| A partir de ces questions, trois indices ont été produits (pp.28-9):
| |
| | |
| * Var_PUP1 ― degré d’importance des outils d’entraide et de collaboration pour les élèves
| |
| | |
| * Var_PUP2 ― degré d’importance des outils de communication entre élèves
| |
| | |
| * Var_PUP3 ― accord sur ce qui favorise les apprentissages de type constructiviste
| |
| ===Design de systèmes comparatifs similaires ===
| |
|
| |
| | |
| Ce design est largement utilisé dans l’analyse des comparaisons de politiques publiques. Il permet de comparer les systèmes éducatifs de districts / régions et de pays. Ce design se contente généralement d’utiliser des statistiques descriptives très simples, et souvent des données globales officielles.
| |
| | |
| Principe'' ''(Figure 37):
| |
| | |
| 1. Assurez-vous d’avoir une bonne variance parmi les ''''variables opératoires'''', i.e l’ensemble de toutes les variables dépendantes et indépendantes.
| |
| | |
| 2. Assurez-vous qu’aucune autre variable n’ait de la variance (i.e qu’aucune variable de contrôle cachée ne puisse produire d’effets)
| |
| | |
|
| |
| | |
| Figure 37: Design de systèmes comparatifs similaires
| |
| | |
| En d’autres termes, sélectionnez des cas différents en ce qui concerne les variables pertinentes pour votre recherche, mais similaires pour les autres aspects.
| |
| | |
| Exemple: si vous voulez mesurer les effets des TIC, ne choisissez pas une école prestigieuse qui utilise les TIC et une école normale qui ne les utilise pas. Choisissez soit des écoles prestigieuses, soit des écoles «normales», sans quoi vous ne pourriez savoir si c’est réellement l’utilisation des TIC qui fait la différence.
| |
| | |
| Avantages et inconvénients de cette méthode:
| |
| | |
| * fiabilité moins bonne et problèmes de validité de construction
| |
| | |
| * meilleur contrôle de variables inconnues en ce qui concerne la plupart des systèmes de designs différents
| |
| | |
| * validité externe moins bonne (impossibilité à généraliser)
| |
| | |
| * tests statistiques faibles ou inexistants. La plupart du temps, les chercheurs comparent uniquement des données descriptives et ne peuvent fournir de résultats significatifs sur le plan statistique, car les cas sont trop peu nombreux.
| |
| === Résumé ===
| |
|
| |
| | |
| Dans ce chapitre, nous avons présenté quelques designs de recherche fondés sur la théorie, que nous résumons dans le tableau ci-dessous avec quelques cas d’utilisation types. Il existe d’autres designs fondés sur la théorie que nous n’avons pas présentés, e.g. les simulations.
| |
| | |
| <table class=MsoNormalTable border=1 cellspacing=0 cellpadding=0 width="97%"
| |
| style='width:97.34%;margin-left:8.5pt;border-collapse:collapse;border:none'> <tr> <td width="47%" style='width:47.4%;border-top:groove windowtext 6.0pt;
| |
| border-left:groove windowtext 6.0pt;border-bottom:none;border-right:none;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| ''Approche '' </td> <td width="52%" style='width:52.6%;border-top:groove windowtext 6.0pt;
| |
| border-left:none;border-bottom:none;border-right:ridge windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| ''Quelques cas d’utilisation '' </td> </tr> <tr> <td width="47%" style='width:47.4%;border:none;border-left:groove windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| ''Designs expérimentaux '' </td> <td width="52%" style='width:52.6%;border:none;border-right:ridge windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| * Enquêtes psychopédagogiques
| |
| | |
| * Interface homme machine </td> </tr> <tr> <td width="47%" style='width:47.4%;border:none;border-left:groove windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| ''Designs quasi-expérimentaux'' </td> <td width="52%" style='width:52.6%;border:none;border-right:ridge windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| * Ingénierie pédagogique (dans son ensemble)
| |
| | |
| * Psychologie sociale
| |
| | |
| * Analyse de politiques publiques
| |
| | |
| * Réforme éducative
| |
| | |
| * Réforme organisationnelle </td> </tr> <tr> <td width="47%" style='width:47.4%;border:none;border-left:groove windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| ''Designs statistiques '' </td> <td width="52%" style='width:52.6%;border:none;border-right:ridge windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| * Les pratiques pédagogiques
| |
| | |
| * ''Patterns'' (modèles) d’usages </td> </tr> <tr> <td width="47%" style='width:47.4%;border-top:none;border-left:groove windowtext 6.0pt;
| |
| border-bottom:ridge windowtext 6.0pt;border-right:none;background:#D8FF8B;
| |
| padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| ''Designs de systèmes comparatifs similaires '' </td> <td width="52%" style='width:52.6%;border-top:none;border-left:none;
| |
| border-bottom:ridge windowtext 6.0pt;border-right:ridge windowtext 6.0pt;
| |
| background:#D8FF8B;padding:5.65pt 0cm 5.65pt 0cm'>
| |
| | |
| * Analyse des politiques publiques
| |
| | |
| * Education comparative </td> </tr> </table>
| |
| | |
|
| |
| | |
| Bien entendu, vous pouvez combiner plusieurs de ces approches dans un projet de recherche. Vous pouvez également utiliser différents designs pour la même question afin d’obtenir différents éléments de réponse.
| |
| | |
| Pour pratiquer:
| |
| | |
| A) Répondez aux questions!
| |
| | |
| 1. Quelle est la différence principale entre un design expérimental et un design quasi-expérimental?
| |
| | |
| 2. Un design quasi-expérimental et une enquête par sondage ont certains éléments en commun. Lesquels?
| |
| | |
| 3. Listez les étapes importantes d’une enquête par sondage.
| |
| | |
| B) Concevez!
| |
| | |
| 1. Esquissez un design quasi-expérimental pour répondre à la question suivante :
| |
| | |
| Dans un programme de formation à distance, est-ce qu’un tutorat de bonne qualité augmente la satisfaction à l’égard du programme et diminue le taux d’abandon des étudiants?
| |
| | |
| 2. Formulez une hypothèse de recherche qui traite du lien entre la participation des étudiants en ligne et l’accompagnement apportée aux étudiants. Elaborez pour chacune des deux variables une série de quatre questions. Justifiez chaque question et les éléments de réponse.
| |
| | |
| Astuce: vous pourriez trouver des outils de sondage dans la littérature.
| |
| | |
| C) Etude de cas
| |
| | |
| Téléchargez Poellhuber, B., Chomienne, M., Karsenti, T. (2011). L’effet du tutorat individuel sur le sentiment d’auto-efficacité et la persévérance en formation à distance. Revue des sciences de l'éducation, 37 (3), pp. 569-593. DOI: 10.7202/1014758ar
| |
| | |
| 1. Identifiez la question de recherche centrale | |
| | |
| 2. Expliquez comment le sentiment d’auto-efficacité et la persévérance ont été mesurés.
| |
|
| |
|
| 3. Résumez les résultats. <br
| | Milot, J. (2015). Recensement et sondage. Capsule Vidéo. Québec : Collège de Maisonneuve. Repéré à https://www.youtube.com/watch?v=1Rm-E3g1fFY&index=6&list=PLzzOZc8nEo7rrKm5xb5a2teE6BYQNKulZ |
| clear=all style='page-break-before:always'>
| | <br> |
| | Savoie-Zajc, L. & Karsenti, T. (2018). Chapitre 5 : La méthodologie. In Karsenti, T., & Savoie-Zajc, L. (2018). La recherche en éducation. Étapes et approches. Québec : Les presses de l’Université de Montréal. |
| | <br> |
| | Vilatte, J.-C. (2007). Méthodologie de l’enquête par questionnaire. Laboratoire Culture & Communication. Université d’Avignon. Chapitre 1 à 3. Repéré à http://ins.dev- projet.com/sites/default/files/pdf_actualites/vilatte-methodologie-enquete-questionnaire.pdf |
Introduction au module
Nous avons précédemment présenté trois grandes familles d’approches de recherche: (1) la recherche explicative, orientée test de théorie, (2) la recherche interprétative, orientée création de théorie, et (3) la recherche design. Dans ce chapitre, nous présenterons des designs de recherche (stratégies d’investigation) explicatifs, orientés test de théorie, i.e. le courant dominant des sciences sociales. La plupart des recherches en sciences de l’éducation publiées dans des revues de qualité s’appuient sur cette méthodologie. Plusieurs recherches d'évaluation reposent également sur une approche descendante fondée sur des modèles théoriques.
Objectifs d’apprentissage
- Comprendre les principes fondamentaux de la recherche orientée test de théorie
- Se familiariser avec quelques approches principales et être en mesure de les distinguer
Principes
La recherche quantitative cherche à vérifier une théorie en examinant les relations existant entre les variables. Ces variables peuvent être mesurées, par des instruments, afin de générer des données numériques qui vont pouvoir être analysées avec des procédures statistiques. De plus, une étude quantitative a une structure fixe comportant une introduction, la littérature et la théorie, les méthodes, les résultats et la discussion (Creswell, 2014, p. 247).
Les éléments les plus importants d’un design empirique fondé sur la théorie sont de ce fait (Figure 21): la théorie, les hypothèses, les mesures et les analyses causales (statistiques).
Figure 21: Principaux éléments de la recherche empirique fondée sur la théorie
- Conceptualisations: chaque question de recherche est détaillée par l’intermédiaire d’une ou de plusieurs hypothèses. Les hypothèses sont toujours ancrées dans la théorie.
- Mesures: les mesures sont généralement quantitatives (e.g. données expérimentales, données d’enquêtes, «statistiques» organisationnelles ou publiques, etc.) et s’appuient sur des artefacts, tels que des sondages ou du matériel expérimental.
- Analyses et conclusions: les hypothèses sont testées à l’aide de méthodes statistiques, par exemple des designs expérimentaux ou des designs corrélationnels (statistiques).
Il existe plusieurs variantes d’approches de recherche orientées test de théorie. Nous allons nous intéresser à certaines d’entre elles dans les chapitres suivants. Ces différentes approches ont des suppositions et des modèles méthodologiques en commun, que nous présenterons en temps voulu.
Résumé
Liste de designs
Dans ce module sur les designs de recherche orientés test de théorie, nous présentons quelques designs de recherche fondés sur la théorie, que nous résumons dans le tableau ci-dessous avec quelques cas d’utilisation types. Il existe d’autres designs fondés sur la théorie que nous n’avons pas présentés, e.g. les simulations.
Bien entendu, vous pouvez combiner plusieurs de ces approches dans un projet de recherche. Vous pouvez également utiliser différents designs pour la même question afin d’obtenir différents éléments de réponse.
Appropriation de la thématique par des doctorants
Résumés réalisés par des doctorants dans le cadre du Module 3 de RESET-Francophone.
Principes, étapes et caractéristiques d’une enquête par sondage
Résumé réalisé par Corinne Ramillon et Chau Nguyen .
La définition donnée par Milot (2015) pour le recensement et le sondage est la suivante : le recensement est une étude statistique auprès de toute la population. Si le public interrogé est un plus petit échantillon alors il s’agit d’un sondage.
Mais alors comment choisir entre sondage et recensement ?
Selon Milot (2017) et Amyotte & Pépin (2017), le recensement semble plus réaliste car toute la population est interrogée mais il est plus difficile à réaliser en fonction d’obstacles géographiques : l’étendue du territoire à parcourir peut être très vaste, d’obstacles démographiques : la taille de la population à interroger peut engendrer un surcroît de temps pour la récolte des données, d’obstacles financiers : tant les distances que le nombre de participants peuvent engendrer des coûts fort élevés, des obstacles temporels : le recensement est chronophage et en plus il peut être lourd pour le public visé car il est possible que ce dernier ait subi déjà plusieurs autres recensements. Il existe également un dernier obstacle lié à la méthode de collecte : cette dernière peut être destructrice selon le type de produit étudié (par exemple, si l’on analyse la durée de vie d’une ampoule en la laissant allumée jusqu’à sa fin de vie, les coûts liés au matériel s’avèrent fort importants.).
Pour Milot (2017), le sondage est plus économique, sa durée de vie est plus courte que le recensement, il est moins destructeur pour le produit, la population est moins sollicitée, ce qui le rend beaucoup plus favorable pour la récolte des données de la recherche.
Parmi les designs envisageables pour l’enquête par sondage, nous trouvons un premier type, les designs expérimentaux (avec groupes test et témoin, pré et post-tests et distribution aléatoire des sujets obligatoire) et un deuxième type, les designs quasi-expérimentaux (avec seulement le groupe test et distribution aléatoire des sujets pas toujours respectée) qui servent à la réalisation des questionnaires dans les enquêtes par sondage (EduTech Wiki). Amyotte & Pépin (2017) mentionnent également que l’enquête par questionnaire est “une méthode d’investigation très flexible et très polyvalente”. La mise en place de variables de contrôle ne doit pas être oubliée pour tester des hypothèses alternatives (EduTechWiki).
Le troisième type de designs fréquent dans les enquêtes par sondage, sont les designs statistiques. Dans une enquête par sondage selon le design statistique, ce sont des attitudes, des comportements, des expériences, des conditions socio-économiques, etc qui sont recherchés auprès de la population par le biais d’un questionnaire, sans intervention auprès des sujets. Plusieurs méthodes sont possibles : papier, téléphone, entretien, questionnaire en ligne. La plupart du temps, le questionnaire ne peut être administré à l’entièreté de la population mais seulement à un échantillon représentatif, typiquement quelques centaines de personnes.
De plus, il ne faut pas négliger les obstacles à la validité interne de ces types de designs. Une question clé doit être systématiquement posée : quelles sont les autres variables non-contrôlées voire cachées qui pourraient influencer les observables ? Campbell et Stanley (1963) ont élaboré une typologie de ces obstacles dont tout chercheur doit se méfier : l’histoire, la maturation, le test, l’instrumentation, la régression statistique, l’auto- sélection, la mortalité, l’interaction avec la sélection, l’ambiguïté directionnelle, la diffusion ou imitation de traitement et l’égalisation compensatoire.
Une fois que ces variables non-contrôlées voire cachées ont été détectées, il faut également rechercher la validité des données dans ces types de designs. Pour ce faire, Campbell et Stanley (1963) ont défini quatre types de validité : la validité interne, la validité externe, la validité statistique et la validité de construction. Cette typologie est également transposable dans d’autres contextes de recherche telles que les analyses qualitatives structurées ou les designs statistiques.
La structure type d’un plan d’une enquête par sondage se présente ainsi :
Revue de littérature – questions de recherches – cadre d’analyse – approche qualitative possible lors de l’enquête préliminaire – hypothèses – opérationnalisation – définitions des variables (qualitatives, quantitatives continues et quantitatives discrètes) - définitions des échelles (nominale, ordinale, d’intervalles, de rapports) et des questionnaires – définition de la population cible – stratégies d’échantillonnage – identification des méthodes d’analyse – élaboration du questionnaire – test sur quelques sujets – sondage – codage et vérification – construction de l’échelle – analyse statistique des données.
Selon Vilatte (2007), « Le fait auquel renvoie l’objet de l’enquête est soumis à quatre principales transformations qui sont inhérentes à toute démarche d’enquête et de manière plus générale à toute démarche de recherche et qui sont : la délimitation du fait par la définition de l’objet d’étude, la sélection des éléments jugés pertinents au travers des questions, le tri par l’activité de codage et de recodage des informations recueillies, la lecture seulement d’une partie des données. ».
Selon Ghiglione (1987), les objectifs d’un questionnaire d’enquête par sondage sont de plusieurs types : la description, l’estimation et la vérification d’une hypothèse. Amyotte & Pépin (2017) présente les mêmes mais regroupe les deux derniers types sous l’appellation statistique inférentielle.
Quant à Lapointe (2000), il estime qu’il y a plutôt deux types d’enquête par sondage : l’enquête descriptive ou l’enquête causale (avec variable dépendante et indépendante).
D’après Vilatte (2007), l’élaboration d’un tel questionnaire se fait en différentes phases. Il faut tout d’abord définir l’objet de l’enquête, puis les objectifs et les hypothèses, la population ou l’univers de l’enquête, l’échantillon représentatif (par méthode aléatoire ou méthode de quotas). Il faut ensuite rédiger un projet de questionnaire, « sorte de canevas traçant les grands traits du questionnaire » (Vilatte, 2007) puis le tester en le mettant à l’épreuve auprès de quelques personnes. Ce n’est qu’une fois ces étapes passées que l’on peut rédiger la version définitive du questionnaire pour le transmettre à la population choisie en fonction du choix du mode d’administration et de sa présentation (par enquêteur, en auto-administration, par envoi postal, par téléphone, par internet).
Un questionnaire est composé de trois parties : les instructions, les questions, la grille de codification des réponses.
Une fois les données récoltées, il faut passer par la phase de dépouillement et de codage avant de pouvoir analyser les résultats en relation avec les objectifs de l’enquête. Pour terminer, la dernière phase consiste en la rédaction du rapport et son éventuelle publication.
Qu’est-ce qu’une recherche quantitative?
Résumé réalisé par Mahamadou Halilou
Creswell (2014), répond à cette question en ces termes : La recherche quantitative cherche à tester une théorie en examinant les relations existant entre les variables. Ces variables peuvent être mesurées, par des instruments, afin de générer des données numériques qui vont pouvoir être analysées avec des procédures statistiques. De plus, une étude quantitative a une structure fixe comportant une introduction, la littérature et la théorie, les méthodes, les résultats et la discussion (Creswell, 2014, p. 247).
Mais faisons attention aux erreurs qui peuvent entacher ces recherches voir les entamer : quelles sont-elles ?
Première erreur : Vous croyez qu’un lien statistique entre deux variables est pertinent, car il existe une bonne corrélation entre ces deux variables, mais «en réalité» cette corrélation n’existe pas. Il se peut que la raison principale soit une variable qui influence les deux.
En termes complexes: vous rejetez à tort l’hypothèse nulle (pas de lien entre les variables)
Seconde erreur : Vous croyez qu’un lien n’existe pas ... mais «en réalité» il y a bien relation entre les deux variables.
Ex : vous calculez un coefficient de corrélation et les résultats indiquent qu’il est très faible ou insignifiant. Un lien pourrait toutefois exister. La relation n’était peut-être pas linéaire, ou peut-être qu’une autre variable a causé un effet d’interaction...
En termes plus complexes: vous acceptez à tort l’hypothèse nulle
Une chose à retenir : Les méthodes statistiques vous permettent de tester d’autres hypothèses et par conséquent de diminuer les risques d’erreurs de validité interne.
Pratique
Une fois que vous avez lu les introductions aux designs expérimentaux, quasi-expérimentaux et statistiques, vous pouvez revenir ici et pratiquer. Enfin, personne ne vous empêchera de tester maintenant votre savoir-faire...
Pour pratiquer:
A) Répondez aux questions:
- Quelle est la différence principale entre un design expérimental et un design quasi-expérimental?
- Un design quasi-expérimental et une enquête par sondage ont certains éléments en commun. Lesquels?
- Listez les étapes importantes d’une enquête par sondage.
B) Concevez!
- Esquissez un design quasi-expérimental pour répondre à la question suivante :
- Dans un programme de formation à distance, est-ce qu’un tutorat de bonne qualité augmente la satisfaction à l’égard du programme et diminue le taux d’abandon des étudiants?
- Formulez une hypothèse de recherche qui traite du lien entre la participation des étudiants en ligne et l’accompagnement apportée aux étudiants.
- Elaborez pour chacune des deux variables une série de quatre questions.
- Justifiez chaque question et les éléments de réponse.
- Astuce: vous pourriez trouver des outils de sondage dans la littérature.
C) Etude de cas
- Téléchargez Poellhuber, B., Chomienne, M., Karsenti, T. (2011). L’effet du tutorat individuel sur le sentiment d’auto-efficacité et la persévérance en formation à distance. Revue des sciences de l'éducation, 37 (3), pp. 569-593. DOI: 10.7202/1014758ar
- Identifiez la question de recherche centrale
- Expliquez comment le sentiment d’auto-efficacité et la persévérance ont été mesurés.
- Résumez les résultats.
Références
Amyotte, L. & Pépin, J.-N. (2017). Méthodes quantitatives : Applications à la recherche en sciences humaines. 4ème édition. Montréal : Pearson. Chapitre 1, pp. 02-40.
Campbell, D. & Stanley, J. (1963). Experimental and quasi-experimental designs for research. Boston : Houghton Mifflin Company
Campion, B. (2012). Etude de l’apport de la non-linéarité au récit éducatif. Document numérique 3/2012 (Vol 15), p.49-70. Repéré à https://dn.revuesonline.com/gratuit/DN15_3_05_Campion.pdf
Milot, J. (2017). La méthode scientifique. Capsule Vidéo. Québec : Collège de Maisonneuve. Repéré à https://www.youtube.com/watch?v=1EI1zdZZOxc&list=PLzzOZc8nEo7rrKm5xb5a2teE6BYQNKulZ&index=1
Milot, J. (2015). Recensement et sondage. Capsule Vidéo. Québec : Collège de Maisonneuve. Repéré à https://www.youtube.com/watch?v=1Rm-E3g1fFY&index=6&list=PLzzOZc8nEo7rrKm5xb5a2teE6BYQNKulZ
Savoie-Zajc, L. & Karsenti, T. (2018). Chapitre 5 : La méthodologie. In Karsenti, T., & Savoie-Zajc, L. (2018). La recherche en éducation. Étapes et approches. Québec : Les presses de l’Université de Montréal.
Vilatte, J.-C. (2007). Méthodologie de l’enquête par questionnaire. Laboratoire Culture & Communication. Université d’Avignon. Chapitre 1 à 3. Repéré à http://ins.dev- projet.com/sites/default/files/pdf_actualites/vilatte-methodologie-enquete-questionnaire.pdf