

FAIRNESS

Agathe Merceron Berlin University of Applied Sciences Germany

Is it the picture of a bride? (Zou, J. & Schiebinger 2018)

Is it the picture of a bride? (Zou, J. & Schiebinger 2018)

 "More than 45% of ImageNet data, which fuels research in computer vision, comes from the United States, home to only 4% of the world's population. By contrast, China and India together contribute just 3% of ImageNet data, even though these countries represent 36% of the world's population." (Zou, J. & Schiebinger 2018)

- What if the prediction Yes is related to something positive ("not defaulting on a loan", "admission to a college", "receiving a promotion" etc.) and the data used to train the model is skewed, like:
 - The proportion of the applicants admitted for college is higher for white than for black students.
 - The proportion of employees receiving a promotion is higher for males than for female employees.

- The model is likely to reproduce this bias:
 - A white student might be predicted "admitted to college" with a higher probability than a black student.
 - A male employee might be predicted "eligible for a promotion" with a higher probability than a female employee.

- How to measure whether the model is fair?
 - Equalized odds and equal opportunity (Hartd, Price & Srebro 2016)
 - Slicing Analysis and ABROCA (Gardner, Brook & Baker, 2019)
- Another important question: how to make the model fair? We don't see it here.
- Measuring fairness and making models fair is an active area of research.

Slicing Analysis

"model performance is evaluated across different dimensions or categories of the data".

Check whether performance criteria such as accuracy, AUC, Kappa, etc. are the same across subpopulations.

Equalized Odds / Equal Opportunity

- X₁, ... X_k are k attributes used to build the model, Y is the class to predict (Yes / No) and A is the protected attribute which takes two values 0 and 1 (white or black student, male or female employee, etc.). A is not part of X₁, ... X_k.
- Equalized odds: implies that $TPR_{A=0} = TPR_{A=1}$ and $FPR_{A=0} = FPR_{A=1}$, with TPR= TP / P and FPR = FP/ N.

Equalized Odds / Equal Opportunity

- Equalized odds: implies $TPR_{A=0} = TPR_{A=1}$ and $FPR_{A=0} = FPR_{A=1}$, with TPR= TP / P and FPR = FP / N.
 - Accuracy (and other performance criteria) for both subpopulations is the same.

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	TP	FN	Р
	Class=No	FP	TN	Ν

Equalized Odds / Equal Opportunity

- X₁, ... X_k are k attributes, Y is the class to predict (Yes / No) and A is the protected attribute which takes two values 0 and 1 (white or black student, male or female employee, etc.). A is not part of X₁, ... X_k.
- Equal opportunity: $TPR_{A=0} = TPR_{A=1}$, with TPR = TP / P.

References

- Zou, J. & Schiebinger, L. 2018. Design AI so that it's fair.
 In: Nature, Vol. 559, Springer pp. 324-326, 2018.
- Moritz Hardt, Eric Price, Nati Srebro. 2016. Equality of opportunity in supervised learning. In 30th Conference on Neural Information Processing Systems (NIPS), pp. 3315-3323.
- Gardner, J., Brooks, C., Baker, R.J. 2019. Evaluating the Fairness of predictive Students Models Through Slicing Analysis. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge (LAK), pp. 225-234, ACM.
- https://media.ccc.de/v/35c3-9775how_medicine_discovered_sex#t=21