Research and practice models in education

The educational technology and digital learning wiki
Jump to navigation Jump to search

Draft

<pageby nominor="false" comments="false"/>

Introduction

Research and practice (R<-->P) models in education refer to frameworks and practice that articulate the relationship between theory and practice.

See also:

The Burkhardt and Schoenfeld typology and model

This section summarizes some thoughts and findings from Burkhardt and Schoenfeld(2003)

Typology of research and practice in education

Model 1: Teachers read research and implement it in their classrooms.

  • Doesn't work since teachers do not have time to read much research, make sense of it, and then use it productively in a classroom. (Magidson, 2002).

Model 2: Summary guides

  • These guides are often produced by either professional organization or support centres. Not very explicit and not enough to be useful.

Model 3: General professional development

  • Long-term professional development for teachers can be effective if text materials provided are consistent. (Briars, 2001; Briars & Resnick, 2000).

Model 4: The policy route.

  • Doesn't work well, since accelerated diagnosis of causes is inevitably speculative, time scales are not effective, policy can outrun the research base, etc. (Dillon, 2003).

Model 5: The long route

  • There can be a productive dialectic between educational research and practice. (E.g. Gardner, 1985; Senk & Thompson, 2002).)
  • Time scale for substantial R<-->P impact in this case was 25 years, and that evidence on the real impact of such curricula is just beginning to accumulate.

Model 6: Design experiments.

  • “Design experiments represent a much-needed melding of research and practice. Typically, however, they embody only the early ("alpha") stages of the design and refinement process” (Burkhardt and Schoenfeld, 2003: 4)
  • See design-based research

A model for effective R<-->P

  1. Robust mechanisms for taking ideas from laboratory scale to widely used practice.
  2. Norms for research methods and reporting that are rigorous and consistent, resulting in a set of insights and/or prototype tools on which designers can rely. The goal, achieved in other fields, is cumulativity (p. 5)
  3. A reasonably stable theoretical base
  4. Teams of adequate size to grapple with large tasks, over the relatively long time scales required for sound work
  5. Sustained funding to support the R<-->P process on realistic time scales
  6. Individual and group accountability for ideas and products

Basically, we can summarise this as a call for more use-based research (top/right) in Pasteur's quadrant (Stokes, 1997).

The Pasteur quadrant (Stokes, 1997)
not science science
applied Edison (invention) Pasteur (both)
not applied PhD students ;) Bohr (pure theory)

“Our point is that the same profitable dialectic between theory and practice can and should occur (with differing emphases on the R&D components) from the initial stages of design all the way through robust implementation on a large scale.” (Burkhardt and Schoenfeld, 2003: 5)

Linking Rigor with Relevance

A tension exists between educational practitioners and researchers, which is often attributed to their dichotomous and often times polarizing professional ideologies or Discourse communities. When determining what works in education, researchers tend to emphasize evidence-based practices (EBPs) supported by research that is rigorous and internally valid, whereas practitioners tend to value practice-based evidence (PBE) that is relevant and externally valid. The authors argue that these separate mindsets stem from the classical view of research as being either rigorous or relevant. In his canonical Pasteur’s Quadrant, Stokes (1997) proposed that rigor and relevance are complementary notions that, when merged, further the production, translation, and implementation of instructional practices that are both rigorous (i.e., evidence-based) and relevant(i.e., practice-based). The authors propose educational design research (EDR) and communities of practice (CoPs) as frameworks through which to realize the promise of Pasteur’s quadrant.

(Smith et al. 2013: 147)

Smith et al. (2013:152) reconceptualize Stokes quadrant in the following way:

Quadrant Model of Scientific Research (figure redrawn)
Quest for

fundamental
understanding?

Yes Bohrs Quandrant (Knowledge)

Purpose: To systematically generate reliable and rigorous EPBs

Key Words: internal validity

Pasteurs Quadrant (Use-Based)

Purpose: To merge "know what" (EBP) with "know how" (PBE)

Key Words: internal + external validity, collaboration, translation of research to practice

No Unestablished Practices Quadrant (Speculation)

Purpose: To persuade without the need for objective data

Keywords: face validity, conjecture, anecdote, conventional wisdom

Edison's Quadrant (Know-How)

Purpose: To generate and improve PBE within real world contexts

Key Words: exteranl validity, action research, data-driven, effectiveness

  No Yes
Consideration of use?

Unlike most other adaptations of Stokes' model, this model also conceptualizes the lower left quandrant: “This quadrant re- flects Galbraith’s (1958) concept of conventional wisdom—ideas or explanations that, though widely held, are not examined in any meaningful way and are therefore oftentimes inaccurate.” (Smith et al. 2013:152).

John R. Feussner, in a talk (retrieved Jan 2014), presented a more dynamic module that visualized the interplay between Stokes 3 types of research and understanding / technology.

Feussner's revised model of Stokes (redrawn)

Bibliography

  • Barret, Angeline et al. (2007). Initiatives to improve the quality of teaching and learning. A review of recent literature. Background paper prepared for the Education for All Global Monitoring Report 2008 Eucation for All by 2015: will we make it?, Unesco, PDF from psu.edu
  • Briars,D . (March, 2001). Mathematics performance in the Pittsburgh public schools. Presentation at a Mathematic Assessment Resource Service conferenceo on tools for systemic improvement, San Diego, CA.
  • Briars, D, & Resnick,L . (2000). Standards, assessments-and what else? The essential elements of standards-based school improvement. Pittsburgh, PA: University of Pittsburgh.
  • Burkhardt, H, Fraser, R., & Ridgway, J. (1990) The dynamics of curriculum change. In I. Wirszup& R. Streit (Eds.), Developments in school mathematics around the world, Vol.2 (pp. 3-30). Reston,VA: National Council of Teachers of Mathematics.
  • Gardner, H. (1985). The mind's new science: A history of the cognitive revolution. New York: Basic Books.
  • Burkhardt, Hugh and Alan H. Schoenfeld, Improving Educational Research: Toward a More Useful, More Influential, and Better-Funded Enterprise, Educational Researcher , Vol. 32, No. 9 (Dec., 2003), pp. 3-14 JStor
  • Magidson, S. (2002). Teaching, research, and instructional design: Bridging communities in mathematics education. Dissertation Abstracts International 63/09, p. 3139. (UMI No. AAT 3063466)
  • Senk, S. L., & Thompson, D. R. (Eds.). (2002). Standards-based school mathematics curricula: What are they? What do students learn? Mahwah, NJ: Erlbaum.
  • Smith, Garnett J. , Matthew M. Schmidt, Patricia J. Edelen-Smith, Bryan G. Cook (2013). Pasteur's Quadrant as the Bridge Linking Rigor With Relevance, Exceptional Children, 79 (2). Abstract/PDF
  • Stokes, D. (1997). Pasteur's Quadrant: Basic science and technological innovation. Washington, DC: Brookings Institution Press.
  • Vu NV, Bader CR, Vassalli JD. The redesigned undergraduate medical curriculum at the University of Geneva. In Scherpbier A, van der Vleuten C, Tethans J (Eds.), Advances in medical education (pp. 532–5). Dordrecht, The Netherlands: Kluwer, 1997.