Analyse de données qualitatives

De EduTech Wiki
Aller à : navigation, rechercher
Manuel de recherche en technologie éducative
Module: Analyse de données qualitatives
▬▶
brouillon intermédiaire
2016/04/28 ⚒⚒ 2015/08/27

1 Introduction

Ce module présente différents aspects de l’analyse des données qualitatives. Nous allons présenter une approche structurelle «moderne» qui requiert du chercheur de coder les données. Ces codes lui permettront alors de mener divers types d’analyses, dont nous allons vous montrer quelques exemples.

Objectifs d’apprentissage

  • Apprendre à coder des données et créer des manuels de codage (codebooks)
  • Apprendre les fondements de quelques techniques d’analyse descriptive (notamment les situations et les rôles)
  • Apprendre les fondements de quelques techniques d’analyse causale

Caractéristiques d'un chercheur qualitatif

"un bon chercheur qualitatif est doté des caractéristiques suivantes:

  • Une certaine familiarité avec le phénomène et le milieu étudiés,
  • Un intérêt affirmé pour la dimension conceptuelle,
  • Une approche pluridisciplinaire par opposition à une formation restreinte ou cantonnée à une seule discipline,
  • De solides qualités « d’investigateur », comprenant de l’obstination, la capacité à faire parler les gens, et la capacité à prévenir une clôture prématurée".
Miles, M. & Huberman, M. (2003, p. 78). Analyse des données qualitatives. 2e édition. De Boeck Université.

2 Principes de l'analyse de données qualitatives

Avec l’analyse qualitative, le chercheur essaye d'identifier une structure dans les données (comme le font les techniques exploratoires quantitatives). Pour ce faire, deux types de techniques d’analyse sont couramment utilisés:

  1. Une matrice est une tableau qui engage au moins une variable, e.g.
    • Les tableaux de variables centrales selon les cas (équivalents aux statistiques descriptives simples telles que les histogrammes)
    • Les tableaux croisés permettant d’analyser comment deux variables interagissent
  2. Un graphique (réseau ou carte conceptuelle) permet de visualiser les liens entre les données:
    • liens temporels entre des événements
    • liens de causalité entre plusieurs variables
    • diagrammes d'activités et de processus
    • etc.
Analyse = mise en tableaux et visualisations diverses des données

L’analyse des données qualitatives comprend généralement une série d’étapes itératives liées. Le principe général de la plupart des méthodes d’analyse des données qualitatives est le suivant:

  1. Les données doivent être codées et indexées pour pouvoir être retrouvées pour l’analyse. Plus précisément, le codage d’informations permet d’identifier les variables et les valeurs. Une telle analyse systématique des données augmente la fiabilité et la validité de construction, i.e. vous devez observer tout ce qui permet de mesurer les concepts.
  2. Vous devez ensuite créer des visualisations, des matrices, des grammaires, etc. pour interpréter les données.
  3. Vous devez ensuite interpréter, faire émerger du sens, de ces visualisations.
  4. Vous devez finalement vérifier la pertinences de vos analyses et interprétations.
L’analyse des données qualitatives - résumée

Quelques conseils:

  • Lorsque vous utilisez ces techniques, gardez toujours un lien avec la source (autrement dit, les données codées).
  • Efforcez-vous de faire rentrer chaque matrice ou graphique dans une seule page (ou assurez-vous de pouvoir imprimer les travaux réalisés à l’aide d’un ordinateur sur une page A3) afin d'avoir une vue d'ensemble de toutes les données.
  • Privilégiez une vision synthétique, mais préservez suffisamment de détails pour rendre vos artefacts interprétables.
  • Consultez des manuels spécialisés e.g. Miles, Huberman & Saldaña (2014) pour des procédures validées et/ou inspirez-vous de travaux de recherche qualitative publiés dans votre domaine.

3 Avant de commencer

Avant que nous expliquions le codage et l’analyse, nous devons vous conseiller de recourir à un système qui vous permettra de conserver vos documents et vos idées de manière sûre.

  1. Rédigez des mémos pour conserver vos idées. Il est utile d’écrire des petits mémos lorsqu’une idée intéressante surgit à la suite d’une observation.
  2. Créez des fiches de contacts qui vous permettront de garder en tête votre travail de terrain. Après chaque contact (téléphone, interview, observation, etc.), rédigez un document bref qui devrait inclure:
    • Une étiquette claire pour des raisons d’indexation (nom de fichier ou étiquette en papier), e.g. CONTACT_senteni_2005_3_25.doc.
    • Type de contact, date, lieu, et lien vers les notes de l’entretien, transcriptions.
    • Thèmes principaux abordés et variables de recherche traitées (ou renvoi vers la page de l’entretien).
    • Premières remarques interprétatives, spéculations nouvelles, éléments à traiter dans un deuxième temps.
  3. Indexez vos notes d’entretiens:
    • Conservez vos transcriptions (ou fichiers audio/vidéo ou cassettes audio) en lieu sûr.
    • Assignez un code à chaque «texte», e.g. INT-1 ou INTERVIEW_senteni_3_28-1. Le même code pourrait être utilisé comme nom de fichier.
    • Vous pourriez également "agrafer" une fiche de contact avec les notes (voir ci-dessus)
    • Numérotez les pages si vous prenez des notes à la main (elles pourraient tomber par terre…)
  4. Ne vous fiez pas trop à vos disques durs, faites des sauvegardes fréquentes!

4 Différence entre résultats et recherche en cours

Avant de commencer votre analyse, réfléchissez bien à ce dont vous avez besoin (échantillon) pour pouvoir répondre à vos questions de recherche et pensez à consulter des ouvrages de référence pour choisir la méthode la plus appropriée. Remarque: dans le cas de nombreuses études qualitatives rapportées sous forme d'articles dans la littérature, vous remarquerez que les chercheurs présentent souvent uniquement des citations d’entretiens. Ces citations sont choisies pour représenter des opinions spécifiques et sont arrangées selon un ordre logique, e.g. des sujets émergeant dans la perception de l’utilisateur sur des problématiques données. Cependant, avant de rédiger leur article, ces chercheurs ont utilisé des techniques d’analyse comme celles mentionnées dans l'ouvrage de Savin-Baden & Howell Major (2013, pp. 434-447).